文章目录 一:基本概念 (1)神经网络 (2)感知器 (3)深度学习 (4)前向运算和反向传播 二:DeepLearning学习路线 三:深度学习应用 (1)生活领域 (2)深度聚类 四:https://paperswithcode.com/ 五:TensorFlow和Pytorch的选择 六:深度学习项目一般流程 一:基本概念 注意: 本节内容在前文中已有叙述,因此概念不再做重复,只从具体例子出发解释说明 有些概念介绍的可能没有那么准确和详细,会在后续文章中继续补充 (1)神经网络 如下图是一个简单的人工神经网络,从左至右依次为输入层、隐藏层和输出层,图中的每一个圆圈为人工神经元 每个神经元可以接受一个或多个输入,并对输入的线性加权(连线表示权重)进行非线性运算以产生输出。例如下图中, x 1 ‘ = f ( x 1 , x 2 , x 3 , 1 ) x_{1}^{`}=f(x_{1}, x_{2}, x_{3}, 1) x