(深度学习快速入门)第一章:深度学习概述、应用、学习路线和框架选择

本文介绍了深度学习的基础概念,包括神经网络、感知器和深度学习模型。探讨了深度学习的学习路线,给出了资源推荐,并列举了深度学习在语音识别、图像识别等领域的应用。此外,还讨论了深度聚类方法,如自编码器、变分自编码器和生成对抗网络。最后,针对TensorFlow和Pytorch的选择,提出了根据需求选择框架的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:基本概念

注意

  • 本节内容在前文中已有叙述,因此概念不再做重复,只从具体例子出发解释说明
  • 有些概念介绍的可能没有那么准确和详细,会在后续文章中继续补充

(1)神经网络

  • 如下图是一个简单的人工神经网络,从左至右依次为输入层、隐藏层和输出层,图中的每一个圆圈为人工神经元
  • 每个神经元可以接受一个或多个输入,并对输入的线性加权(连线表示权重)进行非线性运算以产生输出。例如下图中, x 1 ‘ = f ( x 1 , x 2 , x 3 , 1 ) x_{1}^{`}=f(x_{1}, x_{2}, x_{3}, 1) x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐江湖

创作不易,感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值