本节会介绍一个非常经典的案例——波士顿房价预测,该案例在机器学习中也常常提及。它代表了一种非常简单的线性回归问题,而这种线性回归问题其实就是一个只有输入和输出层的单层神经网络,所以我们可以利用这个案例来对深度学习做以初步认识
一:波士顿房价预测数据集说明
波士顿房屋于1978年开始统计,共506个数据点,数据采集了美国波士顿地区房价与周边环境因素的量化值,共有14个字段(前13个字段作输入,最后一个字段为待预测字段),含义如下
- CRIM: 城镇人均犯罪率
- ZN: 住宅用地所占比例
- INDUS: 城镇中非住宅用地所占比例
- CHAS: 虚拟变量,用于回归分析
- NOX: 环保指数
- RM: 每栋住宅的房间数
- AGE: 1940 年以前建成的自住单位的比例
- DIS: 距离 5 个波士顿的就业中心的加权距离
- RAD: 距离高速公路的便利指数
- TAX: 每一万美元的不动产税率
- PTRATIO: 城镇中的教师学生比例
- B: 城镇中的黑人比例
- LSTAT: 地区中有多少房东属于低收入人群
- MEDV: 自住房屋房价中位数(也就是均价)
二:Pytorch搭建模型
虽然是一个很简单线性回归问