(深度学习快速入门)第五章第一节2:GAN经典案例之MNIST手写数字生成

本文介绍了使用GAN在MNIST数据集上生成手写数字的案例。通过数据集介绍、GAN的基本原理和损失函数的解析,详细展示了如何编写代码、训练模型,并使用Tensorboard查看训练效果。最终,模型在训练过程中逐步提升生成数字的质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:数据集介绍

MNIST数据集:MNIST是个手写数字图片集,每张图片都做了归一化处理,大小是28x28,并且是灰度图像,所以每张图像格式为1x28x28

包括如下四个文件

在这里插入图片描述

含义如下

类别 文件名 描述
训练集图片 train-images-idx3-ubyte.gz(9.9M) 包含60000个样本
训练集标签 train-l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐江湖

创作不易,感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值