文章目录
引言
传统的图数据分析通常采用监督学习的框架,即通过人为特征提取或端到端图深度学习模型将图数据作为输入,经过训练后,挖掘图数据中的有效信息,输出预测结果。虽然这类图监督学习方法在很多任务上取得了显著成功,但仍面临着以下问题:
- 依赖大量的人工标注数据
- 由于过拟合导致泛化能力差以及面向标签相关的攻击时模型鲁棒性差
为了解决上述问题,不依赖于人工标注的自监督学习正在成为图深度学习的趋势。其中,对比学习是一类重要的自监督学习方法,随着其在计算机视觉、自然语言处理等领域取得成功,如何将对比学习应用在图数据上,开始受到研究者的关注。图数据比语音、文本、图像更加复杂,如何设计有效的图对比学习模型仍面临着诸多挑战
问题定义和相关背景
图定义及其类型
重点研究的是属性图。给定一个属性图