(深度学习快速入门)图对比学习综述笔记-中文信息学报2023第37卷第5期

本文是关于图对比学习的综述,探讨了其在解决传统图深度学习依赖大量标注数据和泛化能力差的问题中的作用。对比学习方法在节点、边和图级别上被应用于图数据,以学习到区分相似和不相似结构的表示。文章介绍了多种图对比学习模型,包括实例对比、跨级别对比、边级别和图级别对比,并讨论了如何将对比学习扩展到不同类型的图和结合监督信息的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

传统的图数据分析通常采用监督学习的框架,即通过人为特征提取或端到端图深度学习模型将图数据作为输入,经过训练后,挖掘图数据中的有效信息,输出预测结果。虽然这类图监督学习方法在很多任务上取得了显著成功,但仍面临着以下问题:

  • 依赖大量的人工标注数据
  • 由于过拟合导致泛化能力差以及面向标签相关的攻击时模型鲁棒性差

为了解决上述问题,不依赖于人工标注的自监督学习正在成为图深度学习的趋势。其中,对比学习是一类重要的自监督学习方法,随着其在计算机视觉、自然语言处理等领域取得成功,如何将对比学习应用在图数据上,开始受到研究者的关注。图数据比语音、文本、图像更加复杂,如何设计有效的图对比学习模型仍面临着诸多挑战

问题定义和相关背景

图定义及其类型

在这里插入图片描述

重点研究的是属性图。给定一个属性图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐江湖

创作不易,感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值