文章目录
- Abstract
- Introduction
- Sequence-based methods
- Graph-based methods
- Image-based methods
- 3D Graph-based methods
- 3D Grid-based methods
- Hybrid data-based methods and ensemble learning
- Transfer learning, multi-task learning, and meta-learning
- Interpretability of the DL model on molecular property prediction
- Molecular property prediction challenges and future work
- Concluding remarks
Abstract
近年来,随着人工智能(AI)方法的发展,计算机辅助药物设计(CADD)得到了迅速发展。有效的分子表达和准确的性能预测是计算机辅助设计(CADD)工作流程中的关键任务。在这篇综述中,我们总结了当前深度学习(DL)方法在分子表示和性质预测方面的应用。我们根据分子数据的格式(1D、2D和3D)对DL方法进行分类。此外,我们还讨论了一些常见的DL模型,如集成学习和迁移学习,并分析了这些模型的可解释性方法。我们也强调了DL方法在分子表征和性质预测方面的挑战和机遇
Introduction
分子性质是化学、药物发现、医疗保健等诸多领域的重要因素。随着机器学习(ML)方法的发展(特别是深度学习方法),分子性质预测(MPP)的准确性和速度也得到了提高,加速了其他相关应用
在分子性质预测中使用深度学习模型首先要解决的问题就是如何表示一个分子,使用分子式(如 C 30 H 35 N 7 O 4 S C_{30}H_{35}N_{7}O_{4}S