(深度学习快速入门)Deep learning methods for molecular representation and property prediction笔记

本文综述了深度学习在分子表示和性质预测中的应用,包括序列、图、图像和3D数据的方法。重点讨论了序列数据处理、图神经网络、自监督学习和解释性。挑战包括数据表示、模型可解释性和数据稀缺性,未来工作聚焦于3D数据的自监督学习、图卷积方法和元学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

近年来,随着人工智能(AI)方法的发展,计算机辅助药物设计(CADD)得到了迅速发展。有效的分子表达和准确的性能预测是计算机辅助设计(CADD)工作流程中的关键任务。在这篇综述中,我们总结了当前深度学习(DL)方法在分子表示和性质预测方面的应用。我们根据分子数据的格式(1D、2D和3D)对DL方法进行分类。此外,我们还讨论了一些常见的DL模型,如集成学习和迁移学习,并分析了这些模型的可解释性方法。我们也强调了DL方法在分子表征和性质预测方面的挑战和机遇

Introduction

分子性质是化学、药物发现、医疗保健等诸多领域的重要因素。随着机器学习(ML)方法的发展(特别是深度学习方法),分子性质预测(MPP)的准确性和速度也得到了提高,加速了其他相关应用

在分子性质预测中使用深度学习模型首先要解决的问题就是如何表示一个分子,使用分子式(如 C 30 H 35 N 7 O 4 S C_{30}H_{35}N_{7}O_{4}S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐江湖

创作不易,感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值