vLLM 代码示例:模型推理、服务部署及API调用

1. 高性能批量推理

from vllm import LLM, SamplingParams

# 初始化多GPU并行模型(假设可用4张A100)
llm = LLM(model="meta-llama/Llama-3-70b-instruct", tensor_parallel_size=4)

# 批量处理提示(支持高并发)
prompts = [
    "解释量子计算的量子比特原理。",
    "用Python实现快速排序算法。",
    "翻译以下句子为英文:人工智能正在改变世界。"
]

# 配置低延迟参数(温度=0.3保证稳定性)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256)

# 批量生成(吞吐量≥5000 tokens/s)
outputs = llm.generate(prompts, sampling_params)

# 输出结果
for i, output in enumerate(outputs):
    print(f"Prompt {i+1}:\n{output.outputs[0].text}\n{'-'*50}")

2. 生产级API服务部署

# 启动分布式API服务(需8卡A100集群)
python -m vllm.entrypoints.api_server \
    --model Qwen/Qwen1.5-72B-Chat \
    --tensor-parallel-size 8 \
    --max-num-batched-tokens 16000 \  # 高吞吐优化
    --port 8000 \
    --host 0.0.0.0 \                 # 允许外部访问
    --enforce-eager                   # 减少显存碎片

3. 企业级API调用(带负载均衡)

import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry

# 配置重试策略(应对高并发场景)
retry_strategy = Retry(
    total=3,
    backoff_factor=1,
    status_forcelist=[502, 503]
)
session = requests.Session()
session.mount("http://", HTTPAdapter(max_retries=retry_strategy))

# 请求参数(JSON序列化优化)
payload = {
    "prompt": "生成企业级数据中台架构方案。",
    "temperature": 0.5,
    "top_p": 0.9,
    "max_tokens": 1024,
    "stream": True  # 支持流式输出
}

# 发送至负载均衡端点
response = session.post(
    "http://api.your-company.com/v1/completions",
    json=payload,
    headers={"Authorization": "Bearer YOUR_API_KEY"},
    timeout=30  # 生产环境超时设置
)

# 流式处理结果
if response.status_code == 200:
    for chunk in response.iter_lines():
        if chunk:
            print(chunk.decode("utf-8"))
else:
    print(f"API Error: {response.text}")

关键配置说明

参数生产环境建议值作用
tensor_parallel_sizeGPU数量实现多卡并行推理
max-num-batched-tokens≥10000提升吞吐量的核心参数
enforce-eager开启避免显存碎片导致OOM
streamTrue流式输出降低端到端延迟
### 如何在服务器中部署 VLLM API #### 部署前的技术准备 为了成功部署 VLLM API,需要理解其核心功能和技术背景。vLLM 是一种支持按需加载和卸载模型服务框架,能够模拟 OpenAI API 的行为,从而允许开发者轻松替换现有的 OpenAI 调用逻辑[^3]。 #### 初始化 vLLM 服务 启动 vLLM 服务的第一步是完成初始化操作。此过程涉及配置必要的运行环境以及定义模型加载策略。具体来说,可以通过命令行工具或者 Python 脚本来设置服务的基础架构[^2]。 #### 设置 API 认证机制 为了让客户端安全地访问 vLLM 提供的接口,建议启用基于密钥的身份验证方案。用户可以选择通过 `--api-key` 参数传递认证令牌,也可以利用环境变量 `VLLM_API_KEY` 来简化管理流程[^1]。 #### 编写代码实现模型调用 一旦服务端已经就绪,则可以在应用层面上编写脚本以测试实际效果。下面展示了一个典型的例子,演示了如何模仿 OpenAI SDK 的风格连接本地部署好的 vLLM 实例: ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:8000/v1", api_key="your_api_token_here" ) completion = client.chat.completions.create( model="meta-llama/Llama-2-7b-chat-hf", messages=[ {"role": "user", "content": "What is the capital of France?"}, {"role": "assistant", "content": ""} ] ) print(completion.choices[0].message.content.strip()) ``` 上述片段展示了完整的交互链条——从创建 HTTP 请求到解析返回数据[^4]。 #### 总结 综上所述,在生产环境中搭建一套可用性强且性能优越的语言处理平台并非难事。只需遵循官方文档指引逐步推进即可达成目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值