Pytorch入门+实战系列七: Seq2Seq与Attention

本文是PyTorch入门系列的最后一讲,通过构建Seq2Seq模型和加入Attention机制来实现机器翻译任务。首先介绍了数据预处理,包括分词、构建词典和数字编码。接着,详细讲解了简单Seq2Seq模型的构建,特别是如何使用GRU处理变长序列,并自定义NLLLoss。最后,复现了Luong的Attention模型,探讨了Attention机制的实现细节。文章适合有一定PyTorch基础的学习者,旨在深入理解Seq2Seq和Attention模型的原理与实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch官方文档:https://pytorch.org/docs/stable/torch.html?

1. 写在前面

今天开始,兼顾Pytorch学习, 如果刚刚接触深度学习并且想快速搭建神经网络完成任务享受快感,当然是Keras框架首选,但是如果想在深度学习或人工智能这条路上走的更远,只有Keras就显得有点独木难支,这时候我们需要一个更加强大的框架,这里我想学习Pytorch,它代码通俗易懂,接近Python原生,学起来也容易一些,所以接下来会整理自己在快速入门Pytorch道路上的所见所得,这个系列会有8篇理论+实战的文章,也是我正在学习的B站上的Pytorch入门实战课程,我会把学习过程的笔记和所思所想整理下来,也希望能帮助更多的人进军Pytorch。想要快速学习Pytorch,最好的秘诀就是手握官方文档,然后不断的实战加反思

如果想真正的理解知识,那么最好的方式就是用自己的话再去描述一遍, 通过这个系列,我相信能够打开Pytorch的大门,去眺望一个新的世界。

今天是这个系列课程的最后一节动手课, 也是作为该系列课程的一个压轴的身份存在, 这节课通过一个机器翻译的任务, 用Pytorch首先实现了一个简易的Seq2Seq

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值