UA MATH566 统计理论 Fisher信息量的性质上

本文探讨了Fisher信息量在统计学中的定义和数学意义,它是衡量分布族中信息多少的一个度量。通过分析与信息论中熵、Divergence和互信息的关系,展示了Fisher信息量在计算熵的差分中的作用,揭示其作为参数估计精度下界的本质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UA MATH566 统计理论 Fisher信息量的性质上

C-R下界是由Fisher统计量定义的,在推导C-R下界的时候,我们只是把下界的逆定义成了Fisher信息量,但尚未探讨这个量的本质是什么?为什么要叫它信息量?它有哪些性质?以及怎么计算的问题。这一讲我们讨论前两个问题,下一讲讨论它的性质,计算则留到后续的博客结合例题介绍。

Fisher信息量的定义

某分布族为 f ( x , θ ) , θ ∈ Θ f(x,\theta),\theta \in \Theta f(x,θ),θΘ,假设 Θ ⊂ R \Theta \subset \mathbb{R} ΘR,则此时的得分函数关于分布参数是一维的
S ( x , θ ) = ∂ log ⁡ L ( θ ) ∂ θ = 1 f ( x , θ ) ∂ f ( x , θ ) ∂ θ S(x,\theta) = \frac{\partial \log L(\theta)}{\partial \theta} = \frac{1}{f(x,\theta)} \frac{\partial f(x,\theta)}{\partial \theta} S(x,θ)=θlogL(θ)=f(x,θ)1θf(x,θ)

则它的一阶矩为零,并称它的二阶矩为Fisher信息量
E [ S ( X , θ ) ] = 0 ,    E [ S ( X , θ ) ] 2 = I ( θ ) E[S(X,\theta)]=0,\ \ E[S(X,\theta)]^2 = I(\theta) E[S(X,θ)]=0,  E[S(X,θ)]2=I(θ)

Fisher信息量的数学意义

下面说明为什么 I ( θ ) I(\theta) I(θ)可以用来衡量信息的多少。在UA MATH636 信息论1 熵中我们介绍了熵、Divergence、互信息等用来衡量信息多少的量,下面我们就来讨论一下Fisher信息量与信息论中的这些信息度量之间的关系。

参考UA MATH636 信息论6 微分熵,微分熵的定义是
h ( θ ) = − E [ log ⁡ f ( x , θ ) ] = − ∫ f ( x , θ ) log ⁡ f ( x , θ ) d x h(\theta) = -E[\log f(x,\theta)] = -\int f(x,\theta) \log f(x,\theta)dx h(θ)=E[logf(x,θ)]=f(x,θ)logf(x,θ)dx

计算微分熵的差分
Δ h = h ( θ + Δ θ ) − h ( θ ) = − ∫ f ( x , θ ) [ log ⁡ f ( x , θ + Δ θ ) − log ⁡ f ( x , θ ) ] d x \Delta h = h(\theta + \Delta\theta) - h(\theta) = -\int f(x,\theta)[ \log f(x,\theta + \Delta\theta)- \log f(x,\theta)]dx Δh=h(θ+Δθ)h(θ)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值