微生物群落控制的理论框架

本文提出了一种理论框架来控制复杂的微生物群落,通过识别并操纵驱动物种来实现对整个群落状态的控制。模型基于微分方程和生态网络,使用有向图表示物种间的相互作用。识别驱动物种的关键在于找到没有autonomous elements的模型,并提出了计算最小驱动集的算法。操纵驱动物种采用脉冲控制策略,通过动态规划解决最优控制序列问题,以达到特定的群落状态目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微生物群落控制的理论框架

原文:A theoretical framework for controlling complex microbial communities.
目的:提出一种控制微生物群落的理论框架,使得在这个框架下,可以使用生态网络识别其驱动物种的最小集合,并通过对其进行操作以控制整个群落。


模型基础

x ( t ) ∈ R N x(t) \in \mathbb R^N x(t)RN表示一个微生物群落在 t t t时刻的状态,它是一个 N N N维向量,第 i i i个维度 x i ( t ) x_i(t) xi(t)表示第 i i i个物种的丰度, i = 1 , ⋯   , N i=1,\cdots,N i=1,,N。假设它随时间的演化满足微分方程:
x ˙ ( t ) = f ( x ( t ) ) , f : R N → R N \dot x(t)=f(x(t)),f:\mathbb R^N \to \mathbb R^N x˙(t)=f(x(t)),f:RNRN

其中 f f f用来对物种固有增长率以及物种之间的交互关系建模。通常 f f f是未知的,并且很难通过观察、实验进行推断,但此处假设 f f f是亚纯函数,这个假设并不强,而且可以适用于大部分生态模型。常用的 f f f的例子如下:

  • Generalized Lotka-Volterra (GLV) f ( x ) = diag ( x ) ( A x + r ) f(x)=\text{diag}(x)(Ax+r) f(x)=diag(x)(Ax+r) 其中 A A A为interaction matrix, r r r是固有增长率向量
  • Pairwise Interaction Model f x ( x ) = q i ( x i ) + ∑ j = 1 N a i j h i j ( x i , x j ) f_x(x)=q_i(x_i)+\sum_{j=1}^N a_{ij}h_{ij}(x_i,x_j) fx(x)=qi(xi)+j=1Naijhij(xi,xj
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值