原文:A theoretical framework for controlling complex microbial communities.
目的:提出一种控制微生物群落的理论框架,使得在这个框架下,可以使用生态网络识别其驱动物种的最小集合,并通过对其进行操作以控制整个群落。
模型基础
用 x ( t ) ∈ R N x(t) \in \mathbb R^N x(t)∈RN表示一个微生物群落在 t t t时刻的状态,它是一个 N N N维向量,第 i i i个维度 x i ( t ) x_i(t) xi(t)表示第 i i i个物种的丰度, i = 1 , ⋯ , N i=1,\cdots,N i=1,⋯,N。假设它随时间的演化满足微分方程:
x ˙ ( t ) = f ( x ( t ) ) , f : R N → R N \dot x(t)=f(x(t)),f:\mathbb R^N \to \mathbb R^N x˙(t)=f(x(t)),f:RN→RN
其中 f f f用来对物种固有增长率以及物种之间的交互关系建模。通常 f f f是未知的,并且很难通过观察、实验进行推断,但此处假设 f f f是亚纯函数,这个假设并不强,而且可以适用于大部分生态模型。常用的 f f f的例子如下:
- Generalized Lotka-Volterra (GLV) f ( x ) = diag ( x ) ( A x + r ) f(x)=\text{diag}(x)(Ax+r) f(x)=diag(x)(Ax+r) 其中 A A A为interaction matrix, r r r是固有增长率向量
- Pairwise Interaction Model f x ( x ) = q i ( x i ) + ∑ j = 1 N a i j h i j ( x i , x j ) f_x(x)=q_i(x_i)+\sum_{j=1}^N a_{ij}h_{ij}(x_i,x_j) fx(x)=qi(xi)+j=1∑Naijhij(xi,xj