Milvus 2.0 正式 GA

经过六个月的开发与测试,Milvus 2.0 GA 版本正式发布,该版本引入了实体删除、自动负载均衡等八大新功能,并支持多种语言 SDK,提供 Milvus K8s Operator 和管理工具,旨在更好地处理大规模高维数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✏️ 编者按:

在历经六个月、9 个 RC 版本的迭代与全球 1000 家用户的实战验证后,我们隆重宣布 Milvus 2.0 GA 版本正式发布。Milvus 研发总监栾小凡撰文,解析正式版本的八大新功能并展望未来发展方向。

Dear Members and Friends of the Milvus Community:

Today, six months after the first Release Candidate (RC) was made public, we are thrilled to announce that Milvus 2.0 is General Available (GA) and production ready! It's been a long journey, and we thank everyone – community contributors, users, and the LF AI & Data Foundation – along the way who helped us make this happen.

The ability to handle billions of high dimensional data is a big deal for AI systems these days, and for good reasons:

  • Unstructured data occupy dominant volumes compared to traditional structured data.

  • Data freshness has never been more important. Data scientists are eager for timely data solutions rather than the traditional T+1 compromise.

  • Cost and performance have become even more critical, and yet there still exists a big gap between current solutions and real world user cases.

Hence, Milvus 2.0. Milvus is a database that helps handle high dimensional data at scale. It is designed for cloud with the ability to run everywhere. If you've been following our RC releases, you know we've spent great effort on making Milvus more stable and easier to deploy and maintain.

  Milvus 2.0 GA now offers:

Entity deletion

As a database, Milvus now supports deleting entities by primary key and will support deleting entities by expression later on.

Automatic load balance

Milvus now supports plugin load balance policy to balance the load of each query node and data node. Thanks to the disaggregation of computation and storage, the balance will be done in just a couple of minutes.

Handoff

Once growing segments are sealed through flush, handoff tasks replace growing segments with indexed historical segments to improve search performance.

Data compaction

Data compaction is a background task to merge small segments into large ones and clean logical deleted data.

Support embedded etcd and local data storage

Under Milvus standalone mode, we can remove etcd/MinIO dependency with just a few configurations. Local data storage can also be used as a local cache to avoid loading all data into main memory.

Multi language SDKs

In addition to PyMilvus, Node.js, Java and Go SDKs are now ready-to-use.

Milvus K8s Operator

Milvus Operator provides an easy solution to deploy and manage a full Milvus service stack, including both Milvus components and its relevant dependencies (e.g. etcd, Pulsar and MinIO), to the target Kubernetes clusters in a scalable and highly available manner.

Tools that help to manage Milvus

We have Zilliz to thank for the fantastic contribution of management tools. We now have Attu, which allows us to interact with Milvus via an intuitive GUI, and Milvus_CLI, a command-line tool for managing Milvus.

Thanks to all 212 contributors, the community finished 6718 commits during the last 6 months, and tons of stability and performance issues have been closed. We'll open our stability and performance benchmark report soon after the 2.0 GA release.

  What's next?

Functionality

String type support will be the next killer features for Milvus 2.1. We will also bring in time to live (TTL) mechanism and basic ACL management to better satisfy user needs.

Availability

We are working on refactoring the query coord scheduling mechanism to support multi memory replicas for each segment. With multiple active replicas, Milvus can support faster failover and speculative execution to shorten the downtime to within a couple of seconds.

Performance

Performance benchmark results will soon be offered on our websites. The following releases are anticipated to see an impressive performance improvement. Our target is to halve the search latency under smaller datasets and double the system throughput.

Ease of use

Milvus is designed to run anywhere. We will support Milvus on MacOS (Both M1 and X86) and on ARM servers in the next few small releases. We will also offer embedded PyMilvus so you can simply pip install Milvus without complex environment setup.

Community governance

We will refine the membership rules and clarify the requirements and responsibilities of contributor roles. A mentorship program is also under development; for anyone who is interested in cloud-native database, vector search, and/or community governance, feel free to contact us.

We’re really excited about the latest Milvus GA release! As always, we are happy to hear your feedback. If you encounter any problems, don't hesitate to contact us on GitHub or via Slack.

GitHub: https://github.com/milvus-io/milvus

Slack: https://milvusio.slack.com/

Best regards,

Xiaofan Luan

Milvus Project Maintainer


Zilliz 以重新定义数据科学为愿景,致力于打造一家全球领先的开源技术创新公司,并通过开源和云原生解决方案为企业解锁非结构化数据的隐藏价值。

Zilliz 构建了 Milvus 向量数据库,以加快下一代数据平台的发展。Milvus 数据库是 LF AI & Data 基金会的毕业项目,能够管理大量非结构化数据集,在新药发现、推荐系统、聊天机器人等方面具有广泛的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值