Flink(十四)【Flink SQL(中)查询】

前言

        接着上次写剩下的查询继续学习。

Flink SQL 查询

环境准备:

# 1. 先启动 hadoop
myhadoop start
# 2. 不需要启动 flink 只启动yarn-session即可
/opt/module/flink-1.17.0/bin/yarn-session.sh -d
# 3. 启动 flink sql 的环境 sql-client
./sql-client.sh embedded -s yarn-session

记得第二步:启动 yarn-seesion !!!

注意:我们写 SQL 的时候尽量避免关键字,比如函数名(avg、sum)!

1、分组窗口聚合

        分组窗口起始就是我们之前学过的 滑动窗口、会话窗口、滚动窗口,之所以叫它分组窗口,其实是把它的一个窗口看做一个分组。

        从1.13版本开始,分组窗口聚合已经标记为过时,鼓励使用更强大、更有效的窗口TVF聚合,在这里简单做个介绍。

        直接把窗口自身作为分组key放在GROUP BY之后的,所以也叫“分组窗口聚合”。SQL查询的分组窗口是通过 GROUP BY 子句定义的。类似于使用常规 GROUP BY 语句的查询,窗口分组语句的 GROUP BY 子句中带有一个窗口函数为每个分组计算出一个结果。

        Flink SQL中只支持基于时间的窗口,不支持基于元素个数的窗口。

分组窗口函数

描述

TUMBLE(time_attr, interval)

定义一个滚动窗口。time_attr 是时间属性,也就是你选择的作为时间语义的字段,interval 是窗口长度。

HOP(time_attr, interval, interval)

定义一个跳跃的时间窗口(在 Table API 中称为滑动窗口)。滑动窗口的长度( 第二个 interval 参数 )以及一个滑动的步长(第一个 interval 参数 )。

SESSION(time_attr, interval)

定义一个会话时间窗口。interval 是会话的间隔。

 其中,ROWTIME 代表的是事件时间语义,PROCTIME 是处理时间语义。

1)准备数据

CREATE TABLE ws (
  id INT,
  vc INT,
  pt AS PROCTIME(), --处理时间
  et AS cast(CURRENT_TIMESTAMP as timestamp(3)), --事件时间
  WATERMARK FOR et AS et - INTERVAL '5' SECOND   --watermark
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '10',
  'fields.id.min' = '1',
  'fields.id.max' = '3',
  'fields.vc.min' = '1',
  'fields.vc.max' = '100'
);
# 设置显示
set sql-client.execution.result-mode=tableau;

我们可以看到,一张 flink sql 的表是允许事件时间和处理时间都存在的,只是水位线只能指定一个。

2)滑动窗口示例(时间属性,窗口长度)

Flink SQL> select id,
> sum(vc) as vcSum,
> tumble_start(et,interval '5' second) as window_start,
> tumble_end(et,interval '5' second) as window_end
> from ws
> group by id,tumble(et,interval '5' second);

查询结果: 

可以看到每个 key 的窗口每 5s 滚动一次。

3)滑动窗口(时间属性,滑动步长,窗口长度)

Flink SQL> select id,
> hop_start(et,interval '3' second,interval '5' second) window_start,
> hop_end(et,interval '3' second,interval '5' second) window_end,
> sum(vc) sum_vc
> from ws
> group by id,hop(et,interval '3' second,interval '5' second);

这里我们指定滑动步长为 3 窗口大小为 5,查看运行结果:
 

我们可以看到,相同 key 的窗口确实间隔 3s,窗口大小为 5s。 

3)会话窗口(时间属性,会话间隔)

select  
id,
SESSION_START(et, INTERVAL '5' SECOND)  wstart,
SESSION_END(et, INTERVAL '5' SECOND)  wend,
sum(vc) sumVc
from ws
group by id, SESSION(et, INTERVAL '5' SECOND);

这里因为我们的数据生成器是源源不断生成数据的,而我们指定了会话间隔为 5s,也就是说只有连续 5s 收不到数据窗口才会关闭,所以我们是看不到数据结果的。

2、窗口表值函数(TVF)聚合

前面我们学习的 Group Window 在 Flink13 版本之后已经被标记为过时了,更推荐的是 TVF Window。

对比GroupWindow,TVF窗口更有效和强大。包括:

  • 提供更多的性能优化手段
  • 支持GroupingSets语法
  • 可以在window聚合中使用TopN
  • 提供累积窗口

        对于窗口表值函数(TVF),窗口本身返回的是就是一个表,所以窗口会出现在FROM后面,GROUP BY后面的则是窗口新增的字段 window_start 和 window_end。

FROM TABLE(
窗口类型(TABLE 表名, DESCRIPTOR(时间字段),INTERVAL 时间间隔)
)
GROUP BY [window_start,][window_end,] --可选

1)滚动窗口(tumble)

Flink SQL> select
> id,
> sum(vc) as vc_sum,
> window_start,
> window_end
> from table(    -- 这里的table是关键字 不是表名
> tumble(table ws,descriptor(et),interval '5' second)
> )
> group by window_start,window_end,id; -- 这里的window_start,window_end都是关键字

运行结果:

2)滑动窗口(hop)

注意:在 TVF 中,滑动窗口的大小必须是步长的整数倍,因为 TVF 会对滑动窗口进行一个优化:把滑动窗口按照步长大小划分为 (窗口大小/步长)个滚动窗口,这样一些需要重复计算的数据所在的滚动窗口只需要计算一次即可。

如果不是整数倍,会报错:[ERROR] Could not execute SQL statement. Reason:
org.apache.flink.table.api.TableException: HOP table function based aggregate requires size must be an integral multiple of slide, but got size xxx ms and slide xxx ms

Flink SQL> select
> id,
> sum(vc) as vc_sum,
> window_start,
> window_end
> from table(
> hop(table ws,descriptor(et),interval '2' second,interval '6' second)
> )
> group by window_start,window_end,id;

我们上面这个滑动窗口会被 TVF 划分为 6/2 也就是 3 个,其中第一个窗口和第二个窗口之间的会有两个重复的计算结果(也就是两个子滚动窗口)。

3)累积窗口(cumulate)

注意:累积窗口的窗口大小必须是步长的整数倍!

Flink SQL> select
> id,
> sum(vc) vc_sum,
> window_start,
> window_end
> from table(
> cumulate(table ws,descriptor(et),interval '2' second,interval '6' second
> ))
> group by window_start,window_end,id;

累积窗口也很常用,需要指定两个参数(窗口的最大长度,窗口的步长),比如统计一天内每个小时的网站访问量就可以开一个累积窗口(窗口的最大长度是 24h,窗口的步长是 1h),语法也很简单,只需要修改一个滑动窗口的一个关键字:cumulate。当窗口结束后会再开启一个窗口,属性和上一个窗口是一样的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

让线程再跑一会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值