机器人位姿数据形式转换与旋转矩阵总结(欧拉角、RPY、NOAP)

在机器人学和计算机视觉领域,位姿(Position and Orientation)描述了一个物体在三维空间中的位置和方向。位姿通常表示为位置向量和方向表示。方向可以用多种方式表示,包括欧拉角(Euler Angles)、RPY(Roll-Pitch-Yaw)、NOAP(Normalized Angle with Quaternion Representation)等。本文将详细介绍这些表示方式之间的转换,以及旋转矩阵的使用,并提供相关的 Python 代码示例。

一、欧拉角

欧拉角是一种通过三个旋转角度描述空间中物体朝向的方法,通常使用三个角度来表示绕三个坐标轴的旋转。欧拉角的顺序会影响最终的朝向,常用的顺序包括 ZYX(航向-俯仰-滚转)和 XYZ(滚转-俯仰-航向)等。

1.1 欧拉角到旋转矩阵的转换

假设给定的欧拉角为 ((\phi, \theta, \psi))(滚转、俯仰、航向),其旋转矩阵 (R) 可以通过以下公式计算:

[
R = R_z(\psi) R_y(\theta) R_x(\phi)
]

其中,旋转矩阵分别为:

[
R_x(\phi) = \begin{bmatrix}
\cos(\phi) & -\sin(\phi) & 0 \
\sin(\phi) & \cos(\phi) & 0 \
0 & 0 & 1
\end{bmatrix}
]

[
R_y(\theta) = \begin{bmatrix}
\cos(\theta) & 0 & \sin(\theta) \
0 & 1 & 0 \
-\sin(\theta) & 0 & \cos(\theta)
\end{bmatrix}
]

[
R_z(\psi) = \begin{bmatrix}
\cos(\psi) & -\sin(\psi) & 0 \
\sin(\psi) & \cos(\psi) & 0 \
0 & 0 & 1
\end{bmatrix}
]

1.2 Python 代码示例

以下代码将给出如何将欧拉角转换为旋转矩阵的示例:

import numpy as np

def euler_to_rotation_matrix(roll, pitch, yaw):
    # 计算旋转矩阵
    R_x = np.array([[1, 0, 0],
                    [0, np.cos(roll), -np.sin(roll)],
                    [0, np.sin(roll), np.cos(roll)]])
    
    R_y = np.array([[np.cos(pitch), 0, np.sin(pitch)],
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只蜗牛儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值