一、背景与挑战
语义分割任务旨在对图像中的每一个像素进行分类,这一任务在图像分割、医学图像分析、自动驾驶等领域有着广泛应用。近年来,卷积神经网络(CNN)凭借其强大的局部特征提取能力在图像分割领域取得了显著进展。然而,CNN虽然能够有效捕捉局部信息,但其对于全局上下文的建模能力较弱,尤其是在图像中的远距离依赖关系方面存在局限性。
为了弥补这一不足,Transformer(特别是Vision Transformer,ViT)在计算机视觉领域得到了广泛的应用。ViT通过自注意力机制能够捕捉图像中的长距离依赖关系,并取得了非常好的性能。ViT在语义分割中的应用也取得了突破性进展,但是其计算开销和训练难度相对较高。
针对这种问题,ViT Adapter的提出提供了一种创新性的方案,将ViT的优点与CNN的局部特征提取能力相结合,从而实现更高效的特征融合,最终提高语义分割的性能。
二、ViT Adapter简介
ViT Adapter的核心思想是通过在ViT模型中引入一个适配器(Adapter)模块,将CNN提取的局部特征与Transformer的全局特征有效融合,从而提升模型对图像内容的理解能力。
1. Transformer与CNN特征融合
ViT Adapter的关键创新点在于如何将CNN和Transformer的特征进行高效融合。具体地,ViT Adapter通过以下步骤进行特征融合:
- CNN特征提取:首先通过CNN提取图像的低级特征,这些特征通常具有很强的局部信息。
- Transformer编码:然后使用ViT模型对图像进行全局特征建模。ViT通过自注意力机制捕捉图像中的全局上下文信息,弥补CNN在远距离依赖建模方面的不足。
- 适配器(Adapter)模块:最后,ViT Adapter通过设计一个适配器模块将CNN和Transformer的特征进行融合。这个适配器模块可以灵活地调整CNN和Transformer特征的权重,从而使得模型能够在保证计算效率的同时,充分利用两者的优点。
2. 适配器的设计
ViT Adapter的适配器模块主要由以下几个部分组成:
- 卷积层(Conv Layers):首先使用卷积层将CNN提取的特征映射到与ViT特征维度相同的空间,保证CNN特征能够与ViT的全局特征兼容。
- 自注意力机制(Self-Attention):然后,利用自注意力机制对CNN和ViT的特征进行加权融合。这个过程能够自动学习不同特征的重要性,从而对不同任务进行针对性的优化。
- 激活函数与归一化:通过ReLU等激活函数以及批量归一化,进一步提升模型的非线性表示能力。
三、ViT Adapter在语义分割中的应用
1. 模型架构
ViT Adapter的整体架构如下所示:
+------------------+ +-----------------------+ +------------------+
| CNN Backbone | ------> | ViT Backbone | ------> | ViT Adapter |
+------------------+ +-----------------------+ +------------------+
- CNN Backbone:用于提取局部特征,通常使用ResNet、EfficientNet等经典卷积网络作为骨干网络。
- ViT Backbone:用于提取全局特征,通常使用预训练的ViT模型。
- ViT Adapter:在CNN和ViT的输出之间添加适配器模块,实现特征的融合和优化。
2. 特征融合流程
- 局部特征提取:首先,输入图像通过CNN提取局部特征。CNN擅长捕捉物体的边缘、纹理等局部信息,这些信息对于图像的分割是至关重要的。
- 全局特征建模:接着,使用ViT模型对图像进行全局上下文的建模。通过自注意力机制,ViT能够捕捉远距离的依