自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(257)
  • 收藏
  • 关注

原创 领域驱动设计实战:构建高效的在线请假考勤系统

领域驱动设计DDD是一种设计思想,它可以同时指导中台业务建模和微服务设计(中台本质是业务模型,微服务是业务模型的系统落地),领域驱动设计强调领域模型和微服务设计的一体性,先有领域模型然后才有微服务,而不是脱离领域模型来谈微服务设计。

2020-03-27 19:04:30 1692091 2297

原创 微服务与领域驱动设计:构建高内聚低耦合系统的指南

领域驱动设计DDD是一种设计思想,它可以同时指导中台业务建模和微服务设计(中台本质是业务模型,微服务是业务模型的系统落地),领域驱动设计强调领域模型和微服务设计的一体性,先有领域模型然后才有微服务,而不是脱离领域模型来谈微服务设计。

2020-03-26 18:34:46 1759739 1894

原创 驾驭复杂性:领域驱动设计的核心理论分析

领域驱动实践基本理论总结与分析

2020-03-24 19:03:13 1688532 3002

原创 深入解析Spring Cloud Config:多样配置中心的实现与高可用策略

这篇文章探讨了配置中心的重要性及其在分布式系统中的应用,特别关注Spring Cloud Config。文章首先介绍了配置中心的由来、功能及选择标准,然后详细阐述了Spring Cloud Config的基本实现方法,包括结合Git、关系型数据库(MySQL)和非关系型数据库(MongoDB)的方案。此外,还讨论了配置中心的高可用性、客户端自动刷新机制及安全认证等扩展功能。最后,文章对比了Spring Cloud Config与Apollo的特性,强调Apollo在企业级应用中的优势。

2019-02-14 14:36:20 1677335 2623

原创 全面解读Spring Cloud Zuul:从配置到优化的实战指南

在微服务架构中,API网关作为核心组件之一,承担着请求路由、负载均衡、安全认证等重要功能。Spring Cloud Zuul作为一款功能强大的API网关解决方案,得到了广泛应用。本文将深入探讨Spring Cloud Zuul的各项功能,从基础配置到工作原理,再到多层负载和应用优化,全面解析其在实际应用中的最佳实践与实用技巧,为开发者提供一站式指导,助力其打造高性能、高可用的微服务架构。

2019-02-14 14:35:42 1681271 1974

原创 深入理解Spring Cloud Feign与Ribbon:优雅的微服务调用解决方案

在现代的分布式系统中,微服务架构已经成为了构建大型应用的主流方式。而在微服务架构中,服务间的通信尤为重要,直接影响到系统的稳定性和性能。Spring Cloud作为领先的微服务解决方案,提供了Feign和Ribbon这两个强大的工具,用于简化和优化服务间的调用和负载均衡。本文将探讨Spring Cloud Feign和Ribbon的工作原理及其在实际应用中的最佳实践,帮助开发者更好地理解和利用这些工具来构建可靠的微服务系统。

2019-02-14 14:32:18 1677013 2077

原创 深入理解服务发现与注册:从单体架构到微服务时代的演进

本文首先回顾了服务发现与注册技术在不同系统架构时代的应用演进,分析了单体架构、SOA架构和现代微服务架构下的实现方式和挑战。随后,文章详细介绍了服务发现与注册的技术选型,并深入探讨了Eureka作为一种基于AP原则的服务注册中心的设计理念,包括其如何解决服务实例注册、剔除和信息一致性问题。接着,本文分析了Eureka的基本架构和细化结构,包括注册中心服务器、服务提供者和消费者的角色和功能。最后,文章讨论了Eureka的高可用方案、区域亲和性以及参数调优与监控策略,帮助读者更好地理解和应用这一关键技术组件来构

2019-02-14 14:28:33 1682256 1355

原创 业态即战场:零售平台的生意模型与系统设计解构

在这篇文章中,我们从“控货、自营、联营”三种典型零售业态出发,拆解了亚马逊、阿里、京东和本地闪购平台在商品模型设计上的差异与博弈。看似简单的卖货方式背后,其实是平台在“控货权”“商品归属权”上的深层策略博弈:谁掌控商品,谁就掌控数据、流量与利润分配权。本文尝试用一套通俗但不失专业的方式,帮助产品经理和技术伙伴读懂零售平台商品模型的底层逻辑与系统设计演化路径。

2025-06-03 13:16:34 1571 20

原创 突破认知边界:神经符号AI的未来与元认知挑战

这篇文章探讨了神经符号AI的发展前景,特别是其在理解和推理能力上的突破。作者分析了神经符号AI在结合深度学习与符号推理方面的潜力,并提出了元认知挑战,即AI如何自我评估和调整其推理过程。文章指出,尽管这一领域的研究进展迅速,但要实现全面的智能系统,还面临着许多尚未解决的难题。

2025-05-27 11:01:07 10423 73

原创 重塑数学边界:人工智能如何引领数学研究的新纪元

本文探讨了人工智能如何深刻改变数学研究的边界,特别是在数学理论、推理和证明方式上的创新。随着生成式AI的快速发展,AI不仅帮助数学家加速推理过程,还能在新理论的构建中发挥重要作用。文章还深入分析了人机共证的数学证明探索,展现了AI与数学研究之间日益密切的双向关系。

2025-05-24 11:35:22 10226 65

原创 走出 Demo,走向现实:DeepSeek-VL 的多模态工程路线图

本文聚焦 DeepSeek 团队最新发布的大语言模型 DeepSeek-VL,深入探讨其以任务驱动为核心的多模态设计理念。文章从真实世界中复杂且高阶的任务出发,梳理了 DeepSeek-VL 在视觉问答、图像字幕、表格理解、地图导航等方面的能力突破,并指出该模型不再仅追求“看图说话”,而是强调在多模态输入下的任务对齐、信息提取与推理能力。通过剖析其工程思路与模型范式,本文认为 DeepSeek-VL 是多模态模型迈向“实用主义智能”的重要里程碑。

2025-05-24 11:35:03 12476 65

原创 机器能做科学家吗?一场关于开放式科研的 AI 革命

本文基于《The AI Scientist》相关论文,探讨了完全自动化的科研流程,展示了 AI 如何在没有人工干预的情况下,生成研究想法、执行实验、撰写论文并进行评审。核心模块包括大语言模型(LLM)作为“思维核心”、Agent 框架作为执行工具,以及 Aider 编程助手。通过 Diffusion 建模、语言建模和 Grokking 分析等任务的实验,文章评估了 AI 生成的研究论文与人工评审的差异。尽管 AI 在某些任务上表现出潜力,但仍面临创新性不足和实现细节缺失的问题。

2025-05-24 11:34:37 12339 50

原创 新建模范式Mamba——“Selectivity is All You Need?”

Mamba 是一种新颖的序列建模架构,基于选择性状态空间模型(Selective SSM),以线性复杂度实现强大的建模能力,成为挑战 Transformer 的有力候选。本篇文章将深入解读 Mamba 的结构设计与理论基础,涵盖其核心组件(输入关联、选择性滤波器、Scan 运算等)、与 RNN/Attention 的异同、推理与训练效率,以及其在语言建模中的出色表现。通过图示、对比分析与作者实践理解,本文旨在全面揭示 Mamba 如何在准确率与效率之间实现平衡,并探讨其对未来序列建模范式的潜在影响。

2025-05-24 11:34:17 10323 44

原创 一键启动多个 Chrome 实例并自动清理的 Bash 脚本分享!

本文介绍了一个Bash脚本,用于快速启动多个独立的Chrome浏览器实例,每个实例使用独立的用户数据目录,支持批量启动、自动等待用户关闭以及自动清理临时数据。脚本功能包括:接收数字参数启动指定数量的Chrome实例,每个实例可打开指定网页,使用临时用户目录避免配置冲突,并在所有实例关闭后自动清理临时目录。推荐通过设置alias别名的方式,将脚本集成到终端中,方便随时调用。使用案例包括打开默认页面、访问指定网址以及打开本地服务等。该脚本适用于Web自动化测试、多页面展示等场景,操作简便且不留痕迹。

2025-05-24 11:33:28 5875 48

原创 推进可解释人工智能迈向类人智能讨论总结分享

本文探讨了可解释人工智能(XAI)的现状与未来发展,重点分析了AI透明化的必要性和多种解释方法的应用。同时,文章深入讨论了人工通用智能(AGI)和神经AI接口的发展前景,探讨了AI如何逐步具备情感、意识与自我觉察等人类特质,进而向更高层次的智能迈进。此外,文章还强调了伦理、社会责任与跨学科合作的重要性,指出技术进步应与社会价值相融合,推动AI服务于人类福祉。通过对技术与伦理挑战的全面分析,本文展望了一个更加智能且人性化的未来。

2025-05-24 11:33:04 47778 941

原创 探索常识性概念图谱:构建智能生活的知识桥梁

本文探讨了常识性概念图谱的构建及其在智能问答系统中的应用。常识性概念图谱是将人类常识进行系统化和结构化表示的知识图谱,旨在提升机器对常识的理解与应用能力。文章首先介绍了常识性概念图谱的构建过程,包括知识获取、图谱建模与知识融合等步骤。随后,分析了其在智能问答系统中的实际应用效果,强调了常识性知识在提升问答准确性和智能化服务中的重要性。通过实例展示,本文强调常识性概念图谱在未来智能服务中的广泛前景和潜在影响。

2025-05-24 11:32:40 49367 971

原创 为什么相关性不是因果关系?人工智能中的因果推理探秘

因果发现的目标是通过观测数据找出变量之间的因果关系,并用图模型来表示这些关系。这样的因果图能够最好地解释数据的生成过程,即在给定因果结构下生成观测数据的概率最大。因此,因果发现旨在寻找一个最佳的因果图模型,使其能够最好地解释观测数据并揭示变量之间的因果关系。

2025-05-24 11:32:15 113244 970

原创 投资策略规划最优决策分析

本文深入探讨了投资策略规划问题,从理论到实践,全面分析了如何在既定规则下最大化投资回报。我们首先通过状态转移方程和初始条件证明了最优投资策略,即每年将所有资金投入到单一投资产品中。接着,证明了规划最优投资策略问题具有最优子结构性质,并设计了最优投资策略规划算法,详细分析了其时间复杂度。最后,我们引入了新的投资限制条件,证明了在这种情况下,最大化10年回报问题不再具有最优子结构性质。通过这些分析,我们展示了理论优化策略与实际约束条件下的投资决策之间的差异,为投资者提供了宝贵的实践参考。

2025-05-24 11:31:50 78746 1452

原创 高效工作法则:学会思考,掌握五大管理工具

本文总结了五种常用的工作方法论:PDCA循环、RACI模型、RCA法则、SWOT分析法和SMART目标设定。通过介绍每种方法的核心概念和应用步骤,本文旨在帮助读者提升工作效率、明确责任、深入分析问题、制定合理目标,并优化工作流程。通过系统性地运用这些管理工具,个人和团队可以在工作中实现持续改进、有效沟通和精确决策,从而推动整体目标的达成。

2025-05-24 11:31:29 56262 1503

原创 为什么问题总是反复出现?用 7 步追问法来解答!

"7 步追问法" 是一种问题分析和解决方法,旨在帮助人们更全面地理解问题、找到问题的根本原因,并确定解决问题的途径。

2025-05-24 11:30:58 103438 808

原创 解锁内心的冲突:神经症冲突的理解与解决之道

神经症冲突概述-冲突的基本类型-未解决冲突的后果-尝试解决的途径-真正解决冲突

2025-05-24 11:30:21 49390 1163

原创 反本能---如何对抗你的习以为常

一、概述二、自我提升(一)我们为什么总想拖延(二)如何有效应对拖延(三)如何更好的自我控制(四)为啥付出了没有回报(五)如何提高学习效率三、群体接触,成为高情商(一)情商的五个维度(二)社交过程中的盲区(三)有效社交关系的建立(四)怎么才能好好说话(五)与他人相处的艺术(六)与情绪相处的艺术四、社会洞见,看到本质清晰表达(一)常见的决策陷阱(二)我们有哪些思维误区(三)表达的逻辑(四)看到事物的本质五、学习+改变的过程。

2025-05-24 11:30:00 51276 820

原创 文学与社会学是否只是在做解释的工作?

回到那句话:“文学和社会学最后只是在做解释的工作。”是的,它们确实在解释,但那只是最低层的职责。真正的文学与社会学,它们要做的是有温度的解释,有行动的解释,有愿景的解释。解释不是终点,而是通往行动、理解与共情的桥梁。如果它们只是解释,而不试图改变世界、修复痛苦、重建意义,那么文学与社会学的存在就将沦为空壳。

2025-05-24 11:25:47 9652 54

原创 从一个 ASIN 看透亚马逊:商品模型背后的增长飞轮

在亚马逊电商体系中,每件商品背后都有一套严密的商品建模逻辑。本篇文章以“ASIN 的一生”为线索,系统拆解了亚马逊的商品模型:从飞轮战略出发,剖析 SDP(Single Detail Page)机制如何实现标准化展示;再到 ASIN 编码、父子变体结构与 Offer 分离模型,逐层解析商品信息如何被建构、聚合与呈现。通过图解与案例,文章帮助读者理解商品建品流程、同款聚合原则、价格控制机制等核心逻辑,避免常见运营误区,是一份面向运营、产品、技术人员的实用参考指南。

2025-05-19 09:28:14 5166 49

原创 浮点数的陷阱:你以为的 0.1 + 0.2其实不是 0.3,BigDecimal你真的用对了吗?

在金融和交易系统中,哪怕是一分钱的误差都可能造成巨大损失。然而,很多开发者仍在不经意间落入浮点数的陷阱:看似简单的 0.1 + 0.2,为什么在 Java 中不等于 0.3?本篇文章从底层的 IEEE 754 浮点数标准讲起,剖析误差来源,逐层构建 BigDecimal 使用、格式化控制、精度舍入、判等策略等防线,并结合真实案例总结出一套浮点数处理的实战规范,助你规避金额计算中的隐性风险。

2025-05-18 13:53:41 7428 60

原创 跨平台商品模型大解析:亚马逊 vs 阿里 vs 拼多多

本文深入探讨了亚马逊、阿里巴巴和拼多多三大电商平台的商品模型设计,分析了它们在变体关系、商品抽象层级和SKU定义等方面的异同。亚马逊模型以物流和变体为中心,强调全球仓配体系下的标准化管理;阿里模型采用多视角的弹性结构,适用于多类目、多品牌、多卖家环境;拼多多模型则结合平台标准化与商家个性化,适合短期促销和快速上新场景。文章还提供了实践建议,帮助自研电商平台或商品中台的开发者选择合适的商品结构,并强调了商品模型在电商系统中的核心作用。通过对比分析,本文旨在为读者提供商品建模的启发和参考。

2025-05-17 23:07:45 1425 43

原创 Java 继承复用避坑指南:五个血泪案例揭示高频陷阱

本文系统剖析了继承滥用在实际系统中的五类典型陷阱,包括逻辑被绕过、构造失控、行为不一致、初始化混乱等问题,并通过真实业务案例与测试验证,逐一展示问题根源与演进优化方案。文章强调:继承是一把双刃剑,设计不慎将带来系统性隐患。最终,我们总结出继承的适用边界,倡导以组合、接口、策略等手段替代非必要的继承,实现更健壮、可演进的业务架构。希望本文能为你在系统设计与代码演进中提供深度启发。

2025-05-11 15:58:03 7276 74

原创 连作者都弃用的 LinkedList,你还在用吗?

本文通过源码分析、性能对比和实战案例,揭示了 Java 中 LinkedList 的诸多问题,呼应 Josh Bloch “我从不用 LinkedList”的观点,建议开发者谨慎使用,并优先考虑 ArrayList 或 ArrayDeque 等更高效的替代方案。

2025-05-11 15:57:45 6615 38

原创 如何正确使用 @PostConstruct 和 @PreDestroy 进行资源管理

本文系统介绍了 Spring 中 @PostConstruct 和 @PreDestroy 注解的原理、用法及注意事项,深入分析了其在 Bean 生命周期管理中的作用。通过典型案例解析生命周期注解在继承、作用域、异常处理等场景中的表现,帮助开发者避免常见误区,实现资源的安全初始化与优雅释放。

2025-05-09 09:12:41 7011 55

原创 如何封装一个线程安全、可复用的 HBase 查询模板

本文探讨了如何封装一个线程安全、可复用的 HBase 查询模板。通过引入基于 AtomicReference 的连接懒加载机制和函数式接口封装查询执行逻辑,本文提供了一种高效的 HBase 查询解决方案。文章详细阐述了 HBase 连接池的实现、查询模板的设计与优化,以及如何在实际业务中应用这些技术。通过完整的案例演示,本文帮助开发者解决 HBase 查询中的常见问题,提高系统性能和可维护性。

2025-05-02 21:59:37 10300 50

原创 使用 Java 实现一个简单且高效的任务调度框架

本文系统地介绍了如何使用 Java 设计与实现一个高吞吐、高可用、轻量级的任务调度框架。内容涵盖任务状态管理、线程池并发执行、阻塞队列解耦、失败重试机制及分布式扩展方案(如分片与 Redis 中心化调度)。通过逐步深入的架构演进与代码示例,帮助读者理解调度系统的核心设计原则与工程实现,为构建可扩展的任务处理平台提供实用参考。

2025-05-02 18:45:22 10773 36

原创 面试中系统化地解答系统设计题:通用方法论

本文系统性讲解了应对系统设计面试题的高效方法论,强调从需求澄清出发,逐步构建清晰、结构化的设计思路。文章详尽分析了功能性与非功能性需求的分类、识别技巧,并通过 URL 缩短服务等示例帮助读者理解如何落地分析。接着,介绍了高层架构设计原则,包括模块划分、缓存、异步队列、数据库等关键组件。最后深入探讨详细设计阶段的数据库建模、API 设计和技术选型,为构建高性能、可扩展系统提供全面参考。

2025-05-01 12:54:59 10557 76

原创 从检索到生成:RAG 如何重构大模型的知识边界?

大模型强大却易幻觉,RAG(Retrieval-Augmented Generation)应运而生,成为连接知识与语言的桥梁。本文系统梳理了 RAG 技术从 Naive 到 Advanced 再到 Modular 架构的演进路径,结合架构图与核心模块对比,揭示其背后的设计动因与能力边界。通过对不同阶段的优劣剖析,帮助读者全面理解 RAG 的技术发展、适用场景及未来趋势,为构建高质量、可信任的智能问答系统提供实践启示。

2025-04-23 08:59:21 12077 71

原创 CMS GC优化实战:降低请求高峰期GC Remark阶段停顿时间

本文通过分析CMS GC的Remark阶段在高并发环境中的影响,探讨了如何通过优化CMS GC配置来减少停顿时间。具体包括启用并发预清理机制、强制执行Minor GC等策略,优化后系统的GC停顿时间和吞吐量得到了明显改善,尤其在高峰期,系统的响应能力得到了显著提升。

2025-04-23 08:58:49 11637 117

原创 Java垃圾回收的隐性杀手:过早晋升的识别与优化实战

过早晋升是JVM垃圾回收中的一种常见性能问题,通常由Young区配置不合理、内存分配速率过高或晋升阈值设置不当引起。过早晋升会导致频繁的Full GC、增加停顿时间,并显著影响系统吞吐量。通过调整Young/Eden区的大小、优化内存分配速率、灵活配置MaxTenuringThreshold等策略,可以有效避免过早晋升现象,提升垃圾回收效率。本文结合具体案例,详细介绍了优化措施及其实际效果,提供了对JVM垃圾回收优化的深入分析与实践指南。

2025-04-10 09:15:05 14611 227

原创 单次 CMS Old GC 耗时长问题分析与优化

本文探讨了 Java 应用中 CMS Old GC 停顿时间过长的问题,分析了可能导致长时间 GC 停顿的原因,如 Full GC、Promotion Failure、内存碎片化等,并提出了相应的优化方案。通过调整 JVM 参数(如增加 Old Generation 内存、减少 Promotion Failure、开启内存压缩等)和提高 GC 并行度,可以有效减少 GC 停顿时间,提高系统性能。

2025-04-10 09:14:52 15317 226

原创 RAG 架构地基工程-Retrieval 模块的系统设计分享

Retrieval-Augmented Generation(RAG)架构在大模型时代大放异彩,而其中的 Retrieval 模块往往被低估。本文系统梳理了 Retrieval 模块的关键设计点,包括数据源类型、文档切分策略、向量化与存储结构、语义检索方式,以及多文档融合机制。通过图示与表格对比,揭示不同设计选择对生成效果的深远影响,强调 Retrieval 不仅是召回,更是影响最终答案质量的“地基工程”。本文旨在为研发者构建可控、可调、可解释的 RAG 系统提供结构化参考。

2025-04-07 13:16:12 28842 507

原创 ZGC 参数优化与 GC 触发机制解析分享

本文深入探讨了 ZGC(Z Garbage Collector)参数优化与 GC 触发机制,旨在帮助开发者理解如何通过合理配置 ZGC 的参数来降低 Allocation Stall,提高系统吞吐量和稳定性。文章分析了影响 ZGC 性能的关键因素,如 heap 设置、线程池配置等,并通过实际案例展示了不同参数设置对 GC 行为的影响。通过对 GC 触发机制的解析,本文提供了可行的优化策略,以有效减少系统停顿时间,实现高效的内存管理。

2025-04-07 13:15:56 19225 360

原创 解决 CMS Old GC 频繁触发线上问题技术方案

CMS Old GC 频繁触发不仅会对系统的吞吐量造成影响,还可能导致响应时间波动,严重时甚至可能影响到整个应用的稳定性。通过深入分析其触发原因和优化措施,我们可以采取一系列的解决方案来缓解或消除这一问题,从而提升系统的性能和响应能力。合理配置 CMS 启动条件:通过调整 -XX:CMSInitiatingOccupancyFraction,提前触发 Old GC 回收,避免 Old 区过度占用内存,提高内存回收的及时性,从而减轻系统压力。调整 GC 等待时间。

2025-04-02 08:59:48 16290 364

原创 深入解析 Java GC 调优:减少 Minor GC 频率,优化系统吞吐

这篇文章深入探讨了Java垃圾回收(GC)的优化与调优,重点分析了GC频率、内存分配、以及垃圾回收过程中可能带来的性能问题。通过结合实际案例,文章详细介绍了如何通过调整JVM参数来减少Minor GC频率、避免老年代过早增长并触发Major GC,进一步优化系统性能。通过对GC日志的分析,作者提出了具体的优化策略,并在实践中取得了显著的改进,减少了GC带来的延迟,并优化了TP90/TP99响应时间。文章为开发者提供了丰富的垃圾回收调优技巧,并通过实际操作帮助提升Java应用的稳定性与性能。

2025-03-30 19:50:26 25923 458

赢得签约战:用动态规划优化棒球自由球员选择策略

假设你是一支棒球大联盟球队的总经理。在寒季休季期间,你需要签入一些自由球员。球队老板给你的预算为X XX美元,你可以使用少于X XX美元来签入球员。但如果超支,球队老板就会解雇你。   你正在考虑在N NN个不同位置签入球员,在每个位置上,有P PP个该位置的自由球员供你选择。由于你不希望任何位置过于臃肿,因此每个位置最多签入一名球员(如果在某个特定位置上你没有签入任何球员,则意味着计划继续使用现用球员)。   为了确定一名球员的价值,你决定使用一种称为“VORP”或称为“球员替换价值”(Value Over Replacement Player)的统计评价指标(sabermetric)。球员的VORP值越高,其价值越高。但VORP值高的球员的签约费用并不一定比VORP值低的球员高,因此还有球员价值之外的因素影响签约费用。   对每个可选择的自由球员,你知道他的三方面信息:   • 他打哪个位置   • 他的签约费用   • 他的VORP   设计一个球员选择算法,使得总签约费用不超过X XX美元,而球员的总VORP值最大。

2024-08-03

BeanFactory内部解析:Spring框架的心脏如何运作

BeanFactory 是 Spring 框架中的一个核心接口,用于管理应用程序中的对象(也称为 bean)。它提供了一种将应用程序组件(如服务、数据源、控制器等)解耦并配置到应用程序中的方式。 总的来说,可以初步理解BeanFactory 为 Spring 框架中负责管理 bean 对象的核心组件,它通过 IoC 容器、延迟加载、依赖注入和作用域管理等机制,实现了对象之间的解耦和灵活配置,从而提高了应用程序的可维护性、可测试性和可扩展性。 Bean 的作用域管理: BeanFactory 支持不同的 bean 作用域,如 singleton、prototype、request、session 等。通过配置不同的作用域,可以控制 bean 对象的生命周期,并确保在不同的作用域下能够正确地管理 bean 对象的创建和销毁。 Bean 定义管理: BeanFactory 负责管理应用程序中的所有 bean 定义。这些 bean 定义通常是通过 XML 文件、注解或 Java 代码进行配置的。BeanFactory 负责解析这些配置信息,并在需要时实例化相应的 bean 对象。

2024-08-03

解读InnoDB数据库索引页与数据行的紧密关联

快速了解索引页结构和数据行的直接关系。前提知识如下: 数据行格式内容分析 探究InnoDB Compact行格式背后-CSDN博客 数据行头信息各个属性探究 解析MYSQL行头信息数据行格式分析_jdk 协程-CSDN博客 解析数据行内部单向链表策略 数据库记录行在页内查询探索分析 在InnoDB存储引擎的世界里,数据存储和管理就像是一座繁忙而有序的城市。在这座城市中,每一块16KB大小的土地都被称为一个“页”(Page),而这些页是城市基础设施的核心,其主角就是“索引页”(INDEX页),这些页专门用于存储我们表中的实际记录数据,因此也被称为“数据页”(Data Page)。 目录 一、快速走进索引页结构 (一)整体展示说明 (二)内容说明 File Header(文件头部) Page Header(页面头部) Infimum + Supremum(最小记录和最大记录) User Records(用户记录) Free Space(空闲空间) Page Directory(页面目录) File Trailer(文件尾部) 二、索引页与记录行的简单关系说明

2024-08-03

存储选型实战:用真实案例教你如何做出最佳存储决策

存储选型决策案例模板是一种用于指导组织或个人在选择适合其需求的存储解决方案时所采取的方法和过程的框架。通常包括背景信息、需求分析、候选解决方案、技术评估、成本分析、风险评估、决策依据、决策过程、实施计划、监测与评估等。 存储选型决策案例模板是一种有助于组织或个人更有效地选择适合其需求的存储解决方案的工具。它通过提供结构和透明度,帮助确保决策是基于充分的信息和综合的分析,从而降低了不明智的决策风险。 提醒:依然是模版,所以也可以应用与其他选型决策! 我们提炼主要信息给出其模版。 前置声明 一、需求分析 (一)技术需求 (二)非技术需求 二、存储调研 三、选型决策 (一)决策明细表 (二)决策汇总表 (三)决策结论 前置声明 一、需求分析 (一)技术需求 (二)非技术需求 二、存储调研 三、选型决策 (一)决策明细表 (二)决策汇总表 (三)决策结论 前置声明 一、需求分析 (一)技术需求 (二)非技术需求 二、存储调研 三、选型决策 (一)决策明细表 (二)决策汇总表 (三)决策结论

2024-08-03

揭秘大模型的世界:初步了解人工智能的核心技术

大模型(Large Models)并没有一个官方的统一定义,因为它通常是一个相对的概念,其大小会根据时间、技术和领域的发展而变化。大模型通常指的是深度学习中具有大量参数和计算资源需求的神经网络模型。这些模型在不同的上下文中可能有不同的大小阈值。 例如,对于自然语言处理(NLP)领域,大模型可能指的是包含数十亿到千亿参数的模型,如GPT-3、GPT-4等。对于计算机视觉领域,大模型可能是拥有数亿参数的深度卷积神经网络,如ResNet-152。 在深度学习领域,随着技术的进步,大模型的规模不断扩大,以提高模型的性能。因此,官方定义可能难以固定,但通常可以根据模型的参数数量、计算资源需求和任务性能来判断一个模型是否被称为"大模型"。 重要的是,大模型通常需要大量的计算资源和大规模的数据进行训练,因此在使用它们时需要仔细考虑资源和性能的平衡。

2024-08-03

自动状态管理革命:优化业务流程的智能解决方案

自动流转一般都是一个很大的处理系统,其中包含的处理内容是非常庞大的。在实际业务中,自动化状态流转可以大幅度提升工作效率和系统的响应速度。这种处理系统涉及到多个业务流程、状态管理以及相应的调度策略。开发这样的系统需要深入理解业务需求,并结合实际的技术架构来设计和实现。 在构建一个智能化状态流转处理模块时,我们首先需要明确业务流程的各个状态及其之间的转换规则。这些状态转换通常是基于特定的事件或条件触发的,因此,设计时需要考虑到如何有效捕捉这些触发条件,并在状态发生变化时进行相应的处理。模块的核心在于确保状态流转的准确性和实时性,同时保持系统的高可用性和稳定性。 在这篇文章中,我将提供一个简单的示例,展示如何构建一个自动状态流转处理模块的代码示例。这个示例将涵盖如何定义状态、如何处理状态转换以及如何管理状态流转过程中的事件和异常。需要注意的是,实际的业务场景可能会更加复杂,因此,示例中的代码仅作为一种基本的实现思路,具体的系统设计还需要根据实际业务需求进行调整和优化。 总之,自动化状态流转处理模块的开发是一个综合性的工程,需要开发者具备良好的系统设计能力和对业务流程的深刻理解。

2024-08-03

文档规范的终极指南:大型项目开发中必备的设计文档标准

产品经理通常会在产品开发过程中编写和使用不同层次的文档来指导产品的设计、开发和推广。这些文档的三个主要层次分别是BRD(业务需求文档),MRD(市场需求文档)和PRD(产品需求文档)。该部分应该直接将对应的相关文档url进行展示和做简要说明。 文档类型 说明 主要信息 BRD 商业需求文档 项目背景(产品介绍)、市场分析、团队、产品路线、财务计划、竞争对手分析 等 MRD 市场需求文档 目标市场分析(目标、规模、特征、趋势)、目标用户分析(用户描述、用户使用场景、用户分类统计、核心用户、用户分类分析、竞争对手分析 、产品需求概况(定位、前景)) PRD 产品需求文档 详细功能说明(功能清单、优先级、功能目的、功能详细说明)、业务流程(业务流程、用例)、业务规则、界面原型(界面流程、界面原型)、数据要求(输入输出、极限范围、数据格式等)

2024-08-03

从ES的JVM配置起步思考JVM常见参数优化

Java 8目前仍然是许多企业中主要使用的版本之一,尤其是对于比较保守的公司。在过去,CMS (Concurrent Mark-Sweep) 垃圾回收器在Java 8中是一种常见选择,因为它在某些场景下能够提供较好的性能。 然而,随着Java版本的不断更新,一些旧的特性和组件被淘汰或替代,比如CMS。Java 14中正式废弃了CMS,而新的垃圾回收器,如ZGC和G1,逐渐成为了主流选择。ZGC和G1在处理大内存堆和低停顿时间方面表现出色,适用于现代应用程序的需求。 另外,自Java 9以后,Java的发布模式也发生了变化,从长期支持(LTS)版本切换到了更频繁的发布,大约每六个月发布一次。Java 8和Java 11是目前支持的LTS版本,它们提供了更长时间的支持和维护,适合希望保持稳定性和兼容性的企业和组织使用。 关于JVM相关的优化和配置我们之前提到过很多基本的知识内容,简单进行回顾一下,今天我们就JVM常见优化参数为基本内容再次重新来说(主要从ES的JVM配置来强化理解)。

2024-08-03

互联网企业工程级复杂缓存设计

互联网企业工程级复杂缓存设计

2024-07-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除