pytorch分布式训练(五DataLoader)

本文详细解析了PyTorch中DataLoader组件及其collate_fn参数的使用方法,通过实例展示了如何自定义collate_fn以处理不同大小的图像批次,并提供了将数据集转换为Tensor和创建mini-batch的具体步骤。

torch.utils.data.DataLoader
本节讲述collate_fn使用。

    def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
                 batch_sampler=None, num_workers=0, collate_fn=None,
                 pin_memory=False, drop_last=False, timeout=0,
                 worker_init_fn=None, multiprocessing_context=None):
        torch._C._log_api_usage_once("python.data_loader"))

collate_fn官网介绍:

merges a list of samples to form a mini-batch of Tensor(s).  Used when using batched loading from a map-style dataset.意思是对传入的dataset进行额外处理。

如下官网的一个collate模块,从中可以看出,对数据做各种转化。

default_collate(batch):
    r"""Puts each data field into a tensor with outer dimension batch size"""

    elem = batch[0]
    elem_type = type(elem)
    if isinstance(elem, torch.Tensor):
        out = None
        if torch.utils.data.get_worker_info() is not None:
            # If we're in a background process, concatenate directly into a
            # shared memory tensor to avoid an extra copy
            numel = sum([x.numel
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值