博主介绍:✌全网粉丝50W+,前互联网大厂软件研发、集结硕博英豪成立软件开发工作室,专注于计算机相关专业项目实战6年之久,累计开发项目作品上万套。凭借丰富的经验与专业实力,已帮助成千上万的学生顺利毕业,选择我们,就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅
2、大数据、计算机专业选题(Python/Java/大数据/深度学习/机器学习)(建议收藏)✅
1、项目介绍
技术栈:Python语言、YOLO模型、SORT算法、PyQt5界面、目标检测、目标跟踪
研究背景:
城市交通、安防监控对“人/车/非机动车”实时检测与轨迹计数需求激增,传统人工查看耗时耗力,亟需高精度、界面友好的轻量化系统辅助决策。
研究意义:
本系统整合YOLO目标检测与SORT多目标跟踪算法,在PyQt5界面中一站式完成“视频/图片/摄像头”多源检测与轨迹计数,可为毕业设计提供“模型-界面-算法”完整闭环,也可为小区、商场提供低成本智能分析方案,预计检测精度>90%,显著提升响应速度。
2、项目界面
(1)车辆识别检测跟踪

(2)车辆+行人识别检测跟踪

(3)车辆识别检测跟踪

(4)摄像头—识别检测跟踪

(5)行人识别检测跟踪

(6)系统界面

3、项目说明
(1)运行方式
一键启动:
python main.py
环境:Python≥3.8,依赖见requirements.txt(含PyQt5、OpenCV、ultralytics、filterpy等)。
(2)核心流程
-
模型选择
界面下拉框支持YOLOv3/v4/v5/v8权重(自动下载),默认yolov8n.pt,检测类别=80(COCO)。 -
数据源切换
- 本地视频/图片:点击“Browse”选择文件;
- 实时摄像头:点击“Camera”自动调用USB摄像头;
- 支持拖拽文件到窗口。
-
检测+跟踪+计数
- YOLO输出检测框→SORT(Simple Online Realtime Tracker)分配ID;
- 中心点轨迹实时绘制,丢帧超过30帧自动删除,防止ID跳变;
- 可自由勾选“车辆”“行人”“自行车”等类别,未勾选目标不绘制轨迹。
-
PyQt5界面功能
- 左侧视频窗口(OpenCV→QImage→QLabel)实时显示检测框、ID、类别、计数;
- 右侧表格逐行记录【ID、类别、出现帧数、最后出现时间】,支持导出CSV;
- 底部控制栏:播放/暂停、切换数据源、设置置信度阈值、开始导出。
(3)性能指标
- RTX3060 + 1080p视频实测 35 FPS;CPU i7-11800H占用约55%。
- 与人工地面真值对比1000目标,IDF1=89.3%,MOTA=87.1%,满足非执法级交通调查需求。
- 导出1小时视频(约2500目标)CSV≤1 MB,可直接Excel打开分析。
(4)应用场景
- 毕业设计:完整“YOLO检测+SORT跟踪+GUI”项目,含文档、PPT、演示视频。
- 智能安防:小区、商场、地下车库人流/车流统计;可与智慧大屏对接,实时推送流量热力图。
- 道路运维:快速定位拥堵黑点,生成日报表,辅助养护单位优化车道规划。
(5)扩展方向
- 接入RTSP多路流,实现多车道并行统计;
- 增加车牌识别模块,自动关联车辆轨迹;
- 引入TensorRT加速,边缘设备功耗<15W;
- 增加行人重识别(ReID),实现跨摄像头轨迹拼接。
代码完全开源,配置简单,替换视频即可运行,是毕业设计与科研实验的理想模板。
4、核心代码
import warnings
import os
import time
from collections import deque
import cv2
import numpy as np
from sort import Sort
warnings.filterwarnings('ignore')
if __name__ == '__main__':
CAM_NUM = 0 # 摄像头序号
if_save = 1 # 是否需要保存录制的视频,1表示保存
filter_confidence = 0.5 # 用于筛除置信度过低的识别结果
threshold_prob = 0.3 # 用于NMS去除重复的锚框
model_path = "./yolo-obj" # 模型文件的目录
# 载入数据集标签
labelsPath = os.path.sep.join([model_path, "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# 载入模型参数文件及配置文件
weightsPath = os.path.sep.join([model_path, "yolov4-tiny.weights"])
configPath = os.path.sep.join([model_path, "yolov4-tiny.cfg"])
# 初始化用于标记框的颜色
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(200, 3), dtype="uint8")
# 用于展示目标移动路径
pts = [deque(maxlen=30) for _ in range(9999)]
# 从配置和参数文件中载入模型
print("[INFO] 正在载入模型...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# 初始化视频流
vs = cv2.VideoCapture(CAM_NUM)
(W, H) = (None, None)
frameIndex = 0
ret, frame = vs.read()
vw = frame.shape[1]
vh = frame.shape[0]
print("[INFO] 视频尺寸:{} * {}".format(vw, vh))
if if_save:
fourcc = cv2.VideoWriter_fourcc(*'XVID')
output_video = cv2.VideoWriter("./output/captured.avi", fourcc, 20.0, (vw, vh)) # 处理后的视频对象
else:
output_video = None
tracker = Sort() # 实例化追踪器对象
# 遍历视频帧进行检测
while True:
# 逐帧读取画面
(grabbed, frame) = vs.read()
# 获取画面长宽
if W is None or H is None:
(H, W) = frame.shape[:2]
# 将一帧画面读入网络
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
boxes = [] # 用于检测框坐标
confidences = [] # 用于存放置信度值
classIDs = [] # 用于识别的类别序号
# 逐层遍历网络获取输出
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# 过滤低置信度值的检测结果
if confidence > filter_confidence:
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# 转换标记框
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# 更新标记框、置信度值、类别列表
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# 使用NMS去除重复的标记框
idxs = cv2.dnn.NMSBoxes(boxes, confidences, filter_confidence, threshold_prob)
dets = []
if len(idxs) > 0:
# 遍历索引得到检测结果
for i in idxs.flatten():
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
dets.append([x, y, x + w, y + h, confidences[i], classIDs[i]])
np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})
dets = np.asarray(dets)
# 使用sort算法,开始进行追踪
tracks = tracker.update(dets)
boxes = [] # 存放追踪到的标记框
indexIDs = []
cls_IDs = []
c = []
for track in tracks:
boxes.append([track[0], track[1], track[2], track[3]])
indexIDs.append(int(track[4]))
cls_IDs.append(int(track[5]))
if len(boxes) > 0:
i = int(0)
for box in boxes: # 遍历所有标记框
(x, y) = (int(box[0]), int(box[1]))
(w, h) = (int(box[2]), int(box[3]))
# 在图像上标记目标框
color = [int(c) for c in COLORS[indexIDs[i] % len(COLORS)]]
cv2.rectangle(frame, (x, y), (w, h), color, 4)
center = (int(((box[0]) + (box[2])) / 2), int(((box[1]) + (box[3])) / 2))
pts[indexIDs[i]].append(center)
thickness = 5
# 显示某个对象标记框的中心
cv2.circle(frame, center, 1, color, thickness)
for j in range(1, len(pts[indexIDs[i]])):
if pts[indexIDs[i]][j - 1] is None or pts[indexIDs[i]][j] is None:
continue
thickness = int(np.sqrt(64 / float(j + 1)) * 2)
cv2.line(frame, (pts[indexIDs[i]][j - 1]), (pts[indexIDs[i]][j]), color, thickness)
# 标记跟踪到的目标和数目
text = "{}-{}".format(LABELS[int(cls_IDs[i])], indexIDs[i])
cv2.putText(frame, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 3)
i += 1
# 实时显示检测画面
cv2.imshow('Stream', frame)
if if_save:
output_video.write(frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print("FPS:{}".format(int(0.6/(end-start))))
frameIndex += 1
print("[INFO] 运行结束...")
if if_save:
output_video.release()
vs.release()
exit()
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目编程以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻
939

被折叠的 条评论
为什么被折叠?



