数据结构与算法
文章平均质量分 88
你一身傲骨怎能输
大家好,我是傲骨,一名热爱游戏开发,曾任多家游戏初创公司技术负责人,现在大厂打螺丝,我拥有计算机科学和应用数学学士学位,并在游戏行业工作了超过10年。我参与过多个独立游戏项目,从概念设计到发布,积累了丰富的实践经验。大学期间参与多项创新创业项目,斩获省赛大奖。喜欢用技术和创意打造不一样的世界,分享真实的成长、实用的策略和学习心得。
座右铭:“用代码点燃梦想,用行动改变未来!”
关注我,不错过每一场关于成长与梦想的实战分享!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
游戏开发不能只用树、数组和哈希表!为什么有些场景只有“图结构”能最高效?
游戏开发中的图结构:高效处理复杂关系的关键工具 文章摘要: 图结构是一种由节点和边组成的网络数据结构,与树、数组和哈希表相比,它能更灵活地表达复杂关系。在游戏开发中,图结构特别适合处理地图寻路、任务依赖网、社交关系、开放世界分区、装备合成系统和AI行为等场景。这些场景通常需要表达多路径、环路和动态关系,而传统数据结构无法满足需求。图结构通过支持任意连接和专用算法(如A*寻路、拓扑排序),为游戏开发提供了高效解决方案,同时可视化编辑和动态调整也更方便。尽管存在一定复杂度,但随着游戏机制日益复杂,图结构正成为不原创 2025-11-24 02:46:37 · 243 阅读 · 0 评论 -
图结构(Graph)在游戏开发中的核心应用与实战解析
摘要:图结构(Graph)在游戏开发中的核心应用与实战解析 图结构是一种灵活的数据结构,能表示任意复杂的关系网络,在游戏开发中扮演着“骨架”角色。与树、链表不同,图支持环路和多路径连接,适用于地图寻路、任务依赖、AI决策、社交关系等场景。其核心优势在于表达复杂关系(如开放世界地图的连通性、任务分支依赖),并通过Dijkstra、A*等算法实现高效寻路。然而,图结构也存在内存消耗大、遍历复杂、易产生死循环等缺点。实现方式包括邻接表、邻接矩阵等,经典算法如DFS/BFS用于遍历,拓扑排序处理任务依赖。从RPG到原创 2025-11-24 02:39:38 · 55 阅读 · 0 评论 -
树结构在游戏开发中的妙用与实战
本文系统介绍了树结构在游戏开发中的实际应用与优缺点。树结构通过分层组织数据,广泛应用于游戏UI、场景管理、技能系统、AI行为决策等领域。文章通过生活化比喻(如家谱树、文件夹系统)解释树结构原理,列举游戏中的具体应用场景(技能树、行为树、四叉树等),分析其清晰分层、扩展性强等优点,同时指出递归深度、维护复杂度等缺点。最后提供Python代码示例展示基本实现,帮助开发者理解如何在实际项目中应用树结构优化游戏系统设计。全文语言通俗易懂,适合游戏开发新手学习参考。原创 2025-11-24 02:34:11 · 60 阅读 · 0 评论 -
哈希函数:数据秒查的黑科技
本文深入浅出地介绍了哈希表的核心组件——哈希函数的完整工作流程。通过生活化比喻将哈希函数比作"快递柜门牌号计算器",解释其如何将任意数据转换为固定编号,实现快速存取。文章详细拆解了哈希函数从输入处理、哈希计算到冲突解决的完整链路,列举了字符串哈希、DJB2等常见算法,并结合游戏开发中的道具管理、NPC查找等实际场景说明应用。同时指出了哈希冲突、线程安全等常见问题,并给出扩容、算法优化等解决方案。全文以通俗易懂的语言,让读者轻松理解这一高效数据结构的工作原理及实践技巧。原创 2025-11-24 02:28:56 · 38 阅读 · 0 评论 -
游戏开发必知:哈希表的神奇力量
哈希表(字典)在游戏开发中的应用与优缺点解析 哈希表是一种高效的数据结构,通过键值对存储数据,在游戏开发中应用广泛。本文用通俗易懂的语言讲解哈希表的原理和实际应用。 哈希表的核心特点是查找速度快(O(1)时间复杂度),适合需要频繁查询的场景。游戏开发中常用于: 玩家数据管理(属性、装备、背包) 怪物/NPC管理(ID-对象映射) 技能/道具效果表查询 场景对象管理 多人在线游戏玩家映射 游戏配置数据存储 相比数组、链表等结构,哈希表在随机查找方面优势明显,特别适合需要按名称/ID快速访问数据的场景。但也存在原创 2025-11-24 02:24:55 · 34 阅读 · 0 评论 -
游戏开发必知:栈与队列的实战妙用
本文用通俗易懂的语言解析了栈和队列在游戏开发中的实际应用及优缺点。栈像叠衣服的盒子,后进先出,适合撤销操作、行为管理、UI回退等场景;队列像排队买奶茶,先进先出,适合事件处理、动画播放、任务系统等。文章通过大量比喻和代码示例,对比了两者的核心区别,并列举了在不同游戏类型中的联合用法。栈操作简单但访问受限,队列顺序清晰但无法插队,开发者需根据场景灵活选择。全文兼顾专业性与易懂性,帮助读者快速掌握这两种基础数据结构在游戏中的妙用。原创 2025-11-24 02:21:15 · 30 阅读 · 0 评论 -
游戏开发必学:二叉树实战指南
方向导数和梯度可以用爬山比喻形象理解:方向导数测量某方向的坡度,梯度则指向最陡方向并显示坡度大小。数学上,方向导数是梯度与方向向量的点积。在游戏中,梯度广泛应用于角色寻路(选择陡峭或平缓路径)、水流模拟(沿梯度方向流动)、光照计算(法线贴图)和AI路径规划(沿最优梯度移动)。例如,水流速度和方向由地形梯度决定,角色会根据梯度选择省力或挑战路线。梯度与方向导数在游戏开发中扮演着关键角色,影响着物理模拟、环境渲染和智能决策等多个方面。原创 2017-11-03 02:27:03 · 4108 阅读 · 0 评论 -
生活中不可缺的“标签贴”——大白话彻底讲透哈希算法
本文用通俗易懂的语言全面讲解哈希算法,从生活实例到计算机应用。哈希算法就像"标签贴",将任意数据转换为固定长度的标记,用于快速查找、唯一标识和加密。文章详细解析了哈希的工作原理——输入数据经过分割、搅拌和变换后生成定长哈希值,相同输入必然相同输出,且难以逆向推导。常见哈希算法包括简单模运算、FNV等字符串哈希和MD5/SHA等加密哈希。 哈希表是哈希算法的典型应用,通过"标签抽屉"实现近乎即时的查找插入,但可能发生哈希冲突,采用链表法或开放定址法解决。哈希算法还广泛应原创 2025-11-13 23:08:58 · 806 阅读 · 0 评论 -
分治算法原理——将大象切成小块的智慧
O(n log n)时间复杂度是算法效率的重要指标,表示每个元素需参与log n次分组或合并操作。典型应用包括归并排序、堆排序等分治算法。以排序1000本书为例,采用分治策略:先将书分成两半各自排序再合并,每本书都会经历约10(log₂1000≈10)次分组合并。归并排序代码展示了如何递归拆分数组并有序合并,其时间复杂度为n次操作乘以log n层分解。堆排序通过建堆和反复调整实现同样效率。这类算法比O(n²)快得多,是排序算法的效率天花板,适用于需要高效处理大规模数据的场景。原创 2017-12-15 01:38:15 · 373 阅读 · 0 评论 -
蚁群算法原理大全及案例精讲——大白话入门到实践
本文用通俗语言详解蚁群算法原理及应用。蚁群算法(ACO)模拟蚂蚁觅食行为,通过信息素正反馈机制寻找最优路径。核心流程包括:蚂蚁随机探索、信息素累积与挥发、路径概率选择等。数学上通过信息素浓度和启发因子计算路径选择概率。该算法适用于旅行商问题(TSP)、游戏NPC寻路、物流调度等场景。文中提供了Python实现示例,包含初始化距离矩阵、蚂蚁路径选择和信息素更新等关键步骤。蚁群算法优势在于分布式计算和自适应优化,但也需注意参数调节防止局部最优。通过案例讲解,读者可掌握该算法从理论到实践的完整应用。原创 2025-09-23 23:43:15 · 188 阅读 · 0 评论 -
游戏开发中的动态规划实战技巧
动态规划(DP)是一种通过拆分问题、存储子问题最优解来避免重复计算的高效算法,适用于具有重叠子问题和最优子结构的场景。与贪心算法不同,DP通过全局状态记录实现回溯和综合最优解。其核心步骤包括:定义状态、建立转移方程、设置初始条件,并通过自顶向下(记忆化递归)或自底向上(递推)实现。 常见DP题型包括: 0/1背包问题(最大化背包价值); 最短路径(棋盘移动最小消耗); 最长递增子序列(装备依赖链); 硬币兑换(最少步骤合成)。 在游戏开发中,DP可用于资源调度、AI决策、合成路线优化等场景。关键技巧:状态压原创 2025-08-19 18:41:51 · 1012 阅读 · 0 评论 -
贪心算法:游戏开发中的高效决策术
贪心算法是一种通过局部最优选择来寻求全局最优解的算法,具有简单高效的特点,但不保证所有问题都能得到最优解。它适用于满足贪心选择性质和最优子结构的问题,常见于区间调度、背包问题、匹配覆盖等场景。在游戏开发中,贪心算法广泛应用于资源分配、路径选择、任务调度等实时决策,如AI行为、道具捡取、技能排序等。虽然实现简单且适合快速反馈,但需注意其局限性,某些问题仍需动态规划或回溯法。实战中可通过反例验证策略有效性,在游戏设计中优先考虑贪心法处理即时决策需求。原创 2025-08-19 18:35:12 · 801 阅读 · 0 评论 -
30字讲透状压DP核心
状态压缩DP通过二进制位存储n个布尔状态,将指数级状态数压缩为整数形式。其核心是用0~2^n-1的二进制数表示集合状态,如dp[S][u]表示已访问点集S且当前在u点的最优值。典型应用包括旅行商问题(TSP)、集合覆盖、染色排列等,转移时通过位运算高效枚举子集。编码关键技巧包括子集遍历(S & (1<<u))、状态更新(S|(1<<k))和真子集枚举((sub-1)&S)。该算法适用于n≤20的规模,时间复杂度通常为O(n^2 2^n),是处理组合优化问题的高效方法。原创 2025-08-18 23:23:21 · 788 阅读 · 0 评论 -
Prim算法:轻松搞定最小生成树
Prim算法是一种贪心算法,用于寻找加权无向图的最小生成树(MST)。其核心思想是从一个初始节点出发,每次选择已连接部分和未连接部分之间的最小权重边,逐步扩展连通区域,直到所有节点都被连接。该算法适用于网络建设(如电线铺设、道路规划)、游戏地图生成等需要最小成本连通的应用场景。通过每次选择最优局部解,最终得到全局最优的生成树结构,确保总权值最小且无回路。原创 2025-08-18 03:52:43 · 716 阅读 · 0 评论 -
Dijkstra算法:最短路径的贪心之道
Dijkstra算法核心思想是通过贪心策略求解单源最短路径问题。算法每次选择距离起点最近的未确定节点,将其最短距离固定,并通过"松弛"操作更新其邻居节点的距离(若新路径更短则更新)。这一过程确保每个被选中的节点距离即为最终最短距离。关键步骤可概括为:选取当前最近节点→标记为确定→更新邻居距离。算法依赖于"最近优先选择+邻居松弛更新"的机制,保证找到唯一最短路径。原创 2025-08-18 03:05:49 · 311 阅读 · 0 评论 -
哈希表为何存储无序?秒懂原理!
哈希表通过哈希函数将数据分散存储在不同位置,实现快速查找(平均O(1)),但牺牲了数据的有序性——键值对的存储顺序取决于哈希计算结果,而非插入顺序或键的大小。其核心优势是高效定位,而非有序遍历。若需顺序性,应选用有序字典类结构(如TreeMap)。简言之:哈希表以无序换速度,有序与高效不可兼得。原创 2025-08-18 02:28:53 · 937 阅读 · 0 评论 -
图解数据结构:图的入门与表示法
摘要:图是一种由顶点(节点)和边(关系)组成的数学模型,用于表示事物间的连接关系。顶点代表实体(如城市、人),边表示连接(如道路、好友关系)。图可分为无向图(双向关系)和有向图(单向关系),带权图则赋予边数值(如距离)。图的表示方法包括邻接矩阵(二维表格,查询快但空间消耗大)和邻接表(列表存储相邻节点,节省空间但查询较慢)。总结口诀:图由点边构成,矩阵快速但耗空间,列表高效省内存,方向权重区分明确。(150字)原创 2025-08-18 01:54:36 · 927 阅读 · 0 评论 -
字典树:字符串查找的魔法树
字典树(Trie)是一种高效处理字符串查找的树形结构,通过逐层字符分叉实现快速检索。它将单词拆分为字符序列,共享前缀的单词共用相同路径,不同部分分叉延伸。查找时按字符层级遍历,时间复杂度仅O(字符串长度)。字典树特别适合前缀搜索(如自动补全)、词频统计等场景,其结构类似多叉树,利用前缀共享节省空间。形象比喻为"词语大厦",每层对应一个字符,查找时如同乘坐电梯逐层下降。相比哈希表,字典树能更高效处理前缀相关操作,是字符串集合管理的理想数据结构。原创 2025-08-18 01:22:10 · 661 阅读 · 0 评论 -
B树为何碾压二叉树?深度解析磁盘IO优化
本文探讨了通过预加载多层二叉树节点来减少磁盘I/O的可行性,并与B树设计进行对比分析。理论上,预加载多层能减少IO次数,但实际存在三大限制:访问路径高度分散、指数级增长的预读数据量、缓冲机制无法解决冷数据访问。B树通过每个节点存储大量key,从根本上减少磁盘访问次数,其结构优势在大数据场景下尤为明显。虽然缓存机制能加速热点数据访问,但B树配合缓存才是最优解。结论指出:预加载只能缓解二叉树问题,而B树通过结构优化实现磁盘友好,是现代数据库的核心设计。文末用口诀总结了两者的关键差异。原创 2025-08-17 03:06:17 · 370 阅读 · 0 评论 -
AVL树为何败给红黑树?
AVL树虽然查找高效,但存在频繁旋转、维护成本高、插入/删除复杂度大、并发不友好等缺陷。相比之下,红黑树通过放宽平衡条件,显著减少了旋转次数,使得插入/删除操作更高效,同时仍保持O(log n)的查找性能。这种权衡让红黑树在数据库、操作系统等需要频繁增删的场景中更受欢迎,被广泛应用于Java的TreeMap、C++ STL等标准库中。红黑树以"大致平衡"换取整体性能优化,成为AVL树的理想替代方案。原创 2025-08-17 01:47:26 · 387 阅读 · 0 评论 -
AVL树:小朋友排队自我平衡术
摘要:AVL树是一种自平衡二叉搜索树,通过动态调整节点位置确保左右子树高度差不超过1。类比小朋友排队,老师(AVL树)会实时监测队伍平衡,一旦出现明显倾斜(高度差>1)就通过旋转操作重新调整队形。这种机制保证了查找效率始终稳定在O(log n),但插入/删除操作可能更耗时。AVL树特别适合读多写少的场景,如内存检索系统。其核心优势在于自动维持树形平衡,避免普通二叉搜索树退化成链表的问题。(149字)原创 2025-08-17 01:37:36 · 877 阅读 · 0 评论 -
红黑树插入详解:10-30-15-25全流程
本文演示了红黑树插入节点的过程与调整规则。通过5个步骤插入10、20、30、15、25五个节点,展示了红黑树维持平衡的关键操作:当出现红红冲突时,若叔叔节点为红色则进行变色(父、叔变黑,祖父变红),若叔叔为黑色则根据插入位置进行旋转(如"右右"情况需左旋)。每次调整都确保满足红黑树的三个核心特性:根节点为黑、无连续红节点、所有路径黑节点数相等。最终形成的红黑树结构清晰平衡,体现了红黑树通过局部调整即可维持整体平衡的优势。原创 2025-08-17 01:26:49 · 292 阅读 · 0 评论 -
红黑树:魔法般的自平衡树
红黑树是一种自平衡的二叉搜索树,通过红黑节点颜色规则和旋转操作保持高效性能。其核心规则包括:根节点为黑色、红节点不能连续、所有路径黑节点数相同。这种结构有效防止树退化为链表,确保查找、插入、删除操作的时间复杂度稳定在O(log n)。类比足球队或地铁调度,红黑树通过自动调整(变色/旋转)维持平衡,适用于需要高效数据操作的大规模场景。简言之,红黑树是用颜色规则实现自平衡、保证高效查询的二叉搜索树。原创 2025-08-17 01:17:50 · 800 阅读 · 0 评论 -
什么是“字典”?
字典(哈希表)底层其实也是数组,但访问是通过“键”用哈希函数算出“下标”,insert/find都是O(1)(摊还)。每当容量快满了还会自动扩容搬迁。静态数组是“定长、编号整齐”,只能整数编号,按顺序排布字典比静态数组更灵活、访问更友好,但底层更复杂,实际工程用得更多。原创 2025-08-17 00:40:05 · 460 阅读 · 0 评论 -
动态数组与稀疏数组:扩容奥秘与空间魔法
动态数组通过扩容机制实现长度可变,本质是静态数组的重新分配与数据拷贝,平均扩容时间为O(1)。稀疏数组则通过只存储非空数据(如使用哈希表)来节省空间,适用于稀疏矩阵等场景。动态数组侧重动态扩容能力,稀疏数组则优化存储效率,两者分别解决了不同场景下的数据存储需求。原创 2025-08-17 00:36:44 · 305 阅读 · 0 评论 -
连续最大子段和:生活中的黄金时光
摘要: 最大子数组问题是在整数数组中寻找连续子数组,使其和最大。该问题可类比股市投资(选择最佳买入持有期)或爬山(寻找净提升最大路径)。核心解法是Kadane算法:遍历数组时动态决策,若当前子数组和为负则丢弃(“及时止损”),否则累加并更新最大值。算法高效(O(n)),关键思路是“连续累加或重新开始”。适用于股票、温度等连续数据场景,口诀是“遇负重置,抓黄金段”。代码仅需一次遍历,维护当前和与全局最大值即可。原创 2025-08-17 00:24:41 · 924 阅读 · 0 评论 -
动态规划:最小找钱问题的关键算法
最小找钱问题的关键算法是动态规划,通过分解为子问题求解。定义dp[i]为凑金额i所需最少硬币数,状态转移方程为dp[i] = min(dp[i], dp[i-coin]+1),其中coin为可用硬币面值。初始化dp[0]=0,其他为极大值。最终返回dp[amount]或-1(无解)。该算法通过记忆化避免重复计算,比暴力搜索更高效,属于完全背包问题。核心是利用递推公式将大问题分解为已知小问题的最优解。原创 2025-08-17 00:02:40 · 619 阅读 · 0 评论 -
阶乘级复杂度:n!的疯狂世界
阶乘级复杂度O(n!)出现在需要全排列的场景中,随着元素增加,可能性呈爆炸式增长。比如n个人坐座位的排列有n!种方式,3人6种,5人120种;7个景点的游览路线有5040种;6位不重复数字密码有720种组合。阶乘级问题的特点是每多一个元素,计算量就倍增,导致即使元素很少(如10个),排列数也会远超计算能力(如10!≈362万)。就像排列10本书的顺序,穷尽一生也试不完所有可能。这种复杂度常见于旅行商、密码破解等需要暴力枚举的问题。原创 2025-08-15 18:50:21 · 957 阅读 · 0 评论 -
派对座位大作战:O(n!)的趣味解释
这篇文章通过多个生活案例生动解释了阶乘级复杂度O(n!)的概念。从派对座位安排、城市观光路线设计到超级英雄组队顺序,展示了随着元素数量n的增加,排列数n!会呈爆炸式增长。例如3个人有6种坐法,而7个景点就有5040种游览路线。文章用彩票排列、书籍摆放等比喻说明,即使n不大(如10),排列数也会远超实际处理能力(362万种)。阶乘级问题的核心在于每个选择都影响后续可能性,导致计算量无法承受,常见于需要穷举所有排列组合的场景。原创 2025-08-15 16:01:58 · 479 阅读 · 0 评论 -
C#实战:O(2ⁿ)指数级复杂度解析与案例
本文介绍了四种使用枚举法解决组合问题的C#实现方法。1. 子集枚举:通过二进制掩码生成超市购物清单的所有可能组合;2. 背包问题:递归穷举物品选择方案求最大价值;3. 开关状态枚举:遍历n个开关的所有开闭组合;4. 回溯法生成子集:使用递归深度优先搜索生成数组所有子集。这些方法都遵循"每个元素可选/可不选"的模式,时间复杂度为O(2ⁿ),适用于小规模问题(n≤20)。文章对比了二进制掩码和递归回溯两种实现方式,并指出在大规模问题中应避免暴力枚举。原创 2025-08-15 14:44:30 · 329 阅读 · 0 评论 -
三重循环揭秘:O(n³)的惊人世界
本文通过生活场景和算法案例形象解释了O(n³)时间复杂度的概念。用全校学生三人组合拍照、会议发言顺序安排、水果组合筛选等例子,说明O(n³)需要"每个元素与其他所有元素再与其他所有元素"进行组合尝试,形成三重循环结构。典型算法如Floyd-Warshall的最短路径计算就体现这种三层遍历特性。当数据量n增大时,O(n³)的操作次数会呈立方级增长,远快于O(n²)。核心口诀是:O(n³)意味着"三层全排列,所有组合都要试一遍"。原创 2025-08-15 14:23:42 · 1052 阅读 · 0 评论 -
O(n log n)算法详解及典型应用
O(n log n)复杂度是分治策略的典型特征,结合了线性与对数特性。其核心在于将问题递归分解为更小的子问题(log n层),每层处理全部n个元素。常见案例包括归并排序(分半排序后合并)、堆排序(不断取出堆顶并重组)和快速排序(基准分区后递归)。这些算法通过分层处理显著提升效率,如将n²操作优化为n log n。类似图书分组归类的过程,分治策略使得大规模数据处理变得高效可行。该复杂度也适用于合并有序链表、平衡树构建等场景。原创 2025-08-15 14:05:09 · 496 阅读 · 0 评论 -
哈希冲突:钥匙撞柜的解决之道
哈希算法就像将任意数据转换为固定编号的"储物柜号",不同数据可能算出相同编号(哈希冲突)。解决方法有:1)拉链法-同编号数据排成链表;2)开放寻址法-查找下一个空位存储。Lua采用开放寻址法变体,通过顺序查找解决冲突。这个过程类似快递柜分配,确保每个数据都能找到存储位置。哈希算法通过这两种方式,高效管理有限存储空间中的无限数据。原创 2025-08-15 00:34:18 · 1068 阅读 · 0 评论 -
鸟群算法:3条规则模拟群体智能
Boids算法是Craig Reynolds在1986年提出的群体行为模拟算法,通过三条简单规则(分离、对齐、聚合)实现自然的群体运动。每个个体仅根据局部邻居状态调整自身行为,无需中央控制,就能涌现出复杂的群体动态。该算法广泛应用于动画、游戏AI、机器人集群等领域,如《狮子王》动物群和无人机编队控制。Boids强调群体行为的自组织特性,与个体决策的行为树形成鲜明对比。原创 2025-07-02 23:25:02 · 2400 阅读 · 0 评论 -
JPS算法:让寻路速度提升百倍
摘要: JPS(跳点搜索)是一种高效的路径优化算法,相比传统A*算法,它通过识别关键“跳点”和“强迫邻居”减少节点扩展,提升寻路速度。核心机制包括直线/对角线方向的跳点检测和剪枝策略。优化版本如JPS-Bit(位运算加速)和JPS+(预处理跳点)进一步将性能提升15-273倍,但JPS+不支持动态地图。适用场景包括规则网格和高频寻路(如RTS游戏),但需注意路径直线化和动态权重限制。工程实践中,结合预处理(连通性检查、位图存储)和后处理(路径平滑)能显著优化效果。JPS犹如“聪明的快递员”,仅需在必要拐点停原创 2025-06-10 12:04:46 · 1347 阅读 · 0 评论 -
智能寻路:启发式搜索解密
启发式搜索:像聪明探险家一样高效寻路 启发式搜索是一种智能寻路方法,通过在搜索过程中利用线索或经验(启发函数)优先探索更接近目标的路径,从而避免盲目尝试。形象地说,它就像寻宝时跟随脚印和路标(而非随机乱走),或像外卖小哥用导航选择最优路线。核心算法包括贪心最佳优先搜索(只关注剩余距离)和A*算法(综合已走距离和剩余距离)。常见应用如导航软件、下棋AI和拼图游戏。优点是大幅提升搜索效率,缺点是依赖启发函数的准确性。本质上,启发式搜索让计算机像经验丰富的探险家一样,用智慧而非蛮力解决问题。原创 2024-09-09 22:37:02 · 983 阅读 · 0 评论 -
深度优先搜索(DFS)、广度优先搜索(BFS)、迭代加深搜索(IDS)三者之间对比
DFS:省空间,易迷路。BFS:不迷路,费空间。IDS:不迷路,也省空间,就是多走几次。原创 2024-09-12 14:09:41 · 891 阅读 · 0 评论 -
迭代加深搜索:像潜水一样逐层寻找答案
迭代加深搜索是结合DFS和BFS优点的搜索算法。它通过逐步增加搜索深度限制(如每次多搜索一层),像潜水捞宝或逐层找钥匙一样,既能保证找到最短路径(类似BFS),又节省内存空间(类似DFS)。算法从浅到深反复执行DFS,每次加深深度限制,直到找到目标。适用于解空间大但需要最优解的场景,如八数码等难题。其伪代码核心是循环调用深度受限的DFS,逐步增加深度参数。原创 2024-09-13 14:29:39 · 921 阅读 · 0 评论 -
参数化算法:小参数解决大问题
参数化算法是一种针对大规模问题的高效求解方法,其核心思想是只关注问题的关键参数k(如顶点覆盖中的摄像头数量),而非整个问题规模n。通过将时间复杂度控制在f(k)poly(n)范围内,即使n很大,只要k较小,算法仍能快速运行。典型应用包括顶点覆盖(O(2^kn^2))和k路径问题,广泛应用于生物信息学、网络安全等领域。参数化算法如同"聚焦关键点的智能助手",通过C#等代码实现递归搜索,有效解决NP难问题,是理论研究和工程实践中的重要工具。原创 2024-09-14 12:13:34 · 1256 阅读 · 0 评论 -
快递员派件优化:TSP算法实战解析
摘要:文章以快递派件问题为例,介绍了旅行商问题(TSP)的近似算法应用。通过构建最小生成树(MST)和先序遍历,给出了一个2-近似的解决方案,保证路线长度不超过最优解的2倍。实验数据表明:对于4个节点(公司+3个小区),算法得出的23公里路线接近最优解21公里(近似比1.095)。文中提供了完整的C#代码实现,展示了从MST构建到路线生成的完整流程,说明近似算法在实际调度问题中的高效性和实用性,能快速为快递员规划合理路线。原创 2024-09-15 19:26:24 · 1117 阅读 · 0 评论
分享