pytorch prune剪支教程

本文介绍了如何使用PyTorch的torch.nn.utils.prune库对神经网络进行剪枝,以减少模型参数,提高效率。通过随机和结构化剪枝技术,如L1范数和全局剪枝,展示了在LeNet模型上压缩权重的过程。剪枝涉及创建掩码,修改权重,并在前向传播中应用剪枝操作。此外,还讨论了如何序列化剪枝模型以及如何实现自定义剪枝函数。

剪枝教程

作者: Michela Paganini

目前最先进的深度学习技术依赖于过度参数化的模型,这些模型很难部署。相反,生物神经网络被认为使用了高效的稀疏连接。识别出在模型中通过减少参数数量来压缩模型的最佳技术是很重要的,这样可以减少内存、电池和硬件消耗,同时又不损失准确性。这反过来可以让您在设备上部署轻量级模型,并通过私有的设备上计算来保证隐私。在研究方面,剪枝被用来研究过度参数化和欠参数化网络之间的学习动态差异,研究幸运稀疏子网络和初始化(“中奖彩票”)作为一种破坏性的神经架构搜索技术等等。

在本教程中,您将学习如何使用torch.nn.utils.prune来稀疏化您的神经网络,并如何扩展它以实现自定义的剪枝技术。

要求
“torch>=1.4.0a0+8e8a5e0”

import torch
from torch import nn
import torch.nn.utils.prune as prune
import torch.nn.functional as F

c:\Users\tangzeyu\AppData\Local\Programs\Python\Python310\lib\site-packages\tqdm\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
创建模型
在本教程中,我们使用了来自LeCun等人的LeNet架构,该架构于1998年提出。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        # 1 input image channel, 6 output channels, 3x3 square conv kernel
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 5x5 image dimension
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, int(x.nelement() / x.shape[0]))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

model = LeNet().to(device=device)

检查模块
让我们检查我们的LeNet模型中(未经剪枝的)conv1层。它将包含两个参数weight和bias,目前还没有缓冲区。 在PyTorch中,模型的缓冲区(buffers)是一种特殊的张量,用于存储模型的非参数状态。与模型的参数不同,缓冲区的值不会被更新,而是用于存储模型中的其他状态信息,例如运行统计数据、固定的权重等。在剪枝过程中,我们通常不需要修改或操作缓冲区。

module = model.conv1
print(list(module.named_parameters()))
[('weight', Parameter containing:
tensor([[[[-0.1755, -0.1171, -0.1945],
      [ 0.0642,  0.0352, -0.0277],
      [-0.0194,  0.2641,  0.2108]]],


    [[[ 0.2196, -0.1947, -0.1448],
      [-0.2786,  0.0057, -0.0353],
      [ 0.3258, -0.2772,  0.2517]]],


    [[[-0.0011, -0.2958,  0.1050],
      [ 0.3092, -0.2679,  0.2803],
      [-0.2357, -0.1246, -0.1471]]],


    [[[-0.1714,  0.0742, -0.1299],
      [ 0.1917, -0.1561,  0.2330],
      [ 0.1270,  0.1263,  0.2720]]],


    [[[ 0.2880,  0.2715,  0.3185],
      [-0.2470, -0.0679,  0.2465],
      [-0.2129, -0.0406, -0.1415]]],


    [[[ 0.3107, -0.1880, -0.0499],
      [ 0.0915, -0.2996, -0.2588],
      [-0.0128, -0.1073,  0.1996]]]], requires_grad=True)), ('bias', Parameter containing:
tensor([ 0.2663,  0.0798, -0.1957,  0.2318,  0.2336, -0.1380],
   requires_grad=True))]
print(list(module.named_buffers()))
[]

剪枝一个模块
要剪枝一个模块(在

### YOLOv5 PyTorch 模型教程 #### 准备工作 为了对YOLOv5模型进行有效的枝,需先安装必要的依赖项。确保已安装`torch-pruning`库以及YOLOv5的相关环境。 ```bash pip install torch-pruning git clone https://github.com/ultralytics/yolov5.git cd yolov5 pip install -r requirements.txt ``` #### 加载预训练模型 加载YOLOv5s作为基础模型,并将其转换为适合枝的形式: ```python import torch from models.experimental import attempt_load device = 'cuda' if torch.cuda.is_available() else 'cpu' model_path = './yolov5s.pt' # Load model model = attempt_load(model_path, map_location=device) print(f'Model loaded from {model_path}') ``` #### 定义枝策略 根据网络瘦身(Network Slimming)[^1]的思想来定义具体的枝比例和方法。这里选择按层去除冗余通道的方式来进行枝处理。 ```python from torch_pruning import Pruner prune_ratio = 0.6 # 枝率设置为60% def get_prunable_layers(module): prunable_types = (torch.nn.Conv2d,) layers = [] for name, submodule in module.named_modules(): if isinstance(submodule, prunable_types): layers.append((submodule, 'weight')) return layers pruner = Pruner(get_prunable_layers=model) pruned_model = pruner.prune(model, prune_ratio=prune_ratio) ``` #### 训练与微调 完成初始枝之后,通常还需要通过一定轮次的再训练(retraining)或微调(finetuning),以便让被修过的神经元重新适应新的结构,从而尽可能保持原有的性能水平[^2]。 ```python from utils.datasets import create_dataloader from train import train_one_epoch train_loader = create_dataloader('path/to/train/images', imgsz=640, batch_size=16)[0] for epoch in range(epochs): # epochs可以根据实际情况调整 train_one_epoch(pruned_model, train_loader, device=device) print("Retraining completed.") ``` #### 性能评估 最后一步是对经过枝及重训后的模型进行全面测试,对比原始版本的各项指标变化情况,特别是mAP(mean Average Precision)这一核心评价标准。 ```python from val import main as validate validate(opt={'weights': pruned_model.state_dict(), ...}) ``` 上述过程展示了如何利用PyTorch框架下的工具和技术实现对YOLOv5系列检测器的有效压缩优化,在减少计算资源消耗的同时维持较高的识别精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值