十分感谢DataWhale的开源分享!!!!
DataWhale数据分析|Task3
任务介绍:
任务要求:
使用正则表达式统计论文页数、论文图表数据个数和是否给出代码(主要指GitHub)
任务流程:
- 下载kaggle数据集 【Task1已完成】
- 安装所需package:seaborn(数据可视化),BeautifulSoup4(爬虫相关,用于爬取数据),requests(网络通信),json(json格式数据读取),pandas(大数据分析),matploblib(绘图)【Task1已完成】
- 了解正则表达式
- 使用正则表达式统计不同分类论文平均页数
- 使用正则表达式统计不同分类论文平均图表个数
- 使用正则表达式统计不同分类论文给出代码个数
任务详解
1. 了解正则表达式
可以参考正则表达式——菜鸟教程,我的整理文章为【DataWhale数据分析】正则表达式学习
2. 使用正则表达式统计不同分类论文平均页数
1) 分析comments数据
data['comments']
![data['comments']](https://i-blog.csdnimg.cn/blog_migrate/97ad857b4888b8f890619a6befa85cb0.png)
可以看到,数据格式为[num] + pages,因此可以通过正则表达式来提取出页数信息
2)提取页数信息
# 使用正则表达式匹配,XX pages
data['pages'] = data['comments'].apply(lambda x: re.findall('[1-9][0-9]* pages', str(x)))
# 筛选出有pages的论文
data = data[data['pages'].apply(len) > 0]
# 由于匹配得到的是一个list,如['19 pages'],需要进行转换
data['pages'] = data['pages'].apply(lambda x: float(x[0].replace(' pages', '')))
data['pages'].describe().astype(int)
这里使用了模式字符串[1-9][0-9]* pages

如果使用([1-9][0-9]*) pages可以直接返回页数的字符串

由于有些文章的comments没有提供页数,因此需要使用data[data['pages'].apply(len) > 0]来去掉没有提供页数的论文方便进一步计算;此外,由于数据为list格式,因此需要做一次转换:data['pages'].apply(lambda x: float(x[0].replace(' pages', '')))这里没有看懂为什么要用float来表示,我自己选择用int来进行转换,当然后面也省了astype函数。
3)绘制不同分类论文平均页数直方图
# 选择主要类别
data['categories'] = data['categories'].apply(lambda x: x.split(' ')[0])
data['categories'] = data['categories'].apply(lambda x: x.split('.')[0])
# 每类论文的平均页数
plt.figure(figsize=(12, 6))
data.groupby(['categories'])['pages'].mean().plot(kind='bar')
figsize函数设置生成图像大小,单位为英寸
data.groupby(['categories'])['pages'].mean().plot(kind='bar')按照categories分类,取页数的平均值绘图
实验结果

3. 使用正则表达式统计不同分类论文平均图表个数
1) 分析comments数据
data['comments']
![data['comments']](https://i-blog.csdnimg.cn/blog_migrate/97ad857b4888b8f890619a6befa85cb0.png)
可以看到,数据格式为[num] + figures,因此可以类似于步骤2中的方式来进行操作:
2)提取图表个数信息
data['figures'] = data['comments'].apply(lambda x: re.findall('[1-9][0-9]* figures', str(x)))
data = data[data['figures'].apply(len) > 0]
data['figures'] = data['figures'].apply(lambda x: float(x[0].replace(' figures', '')))
3)绘制不同分类论文平均图表数量直方图
# 选择主要类别
data['categories'] = data['categories'].apply(lambda x: x.split(' ')[0])
# 每类论文的平均页数
plt.figure(figsize=(12, 6))
data.groupby(['categories'])['pages'].mean().plot(kind='bar')
实验结果

4. 使用正则表达式统计不同分类论文给出代码个数
1)提取包含GitHub的论文
# 筛选包含github的论文
data_with_code = data[
(data.comments.str.contains('github')==True)|
(data.abstract.str.contains('github')==True)
]
data_with_code['text'] = data_with_code['abstract'].fillna('') + data_with_code['comments'].fillna('')
# 使用正则表达式匹配论文
pattern = '[a-zA-z]+://github[^\s]*'
data_with_code['code_flag'] = data_with_code['text'].str.findall(pattern).apply(len)
首先筛选出comments和abstract中包含GitHub关键词的论文,然后将abstract和comments的内容相连便于接下来的正则表达式匹配。fillna函数用于填充NA,在此处用‘’来填充NA值。
使用的正则表达式为[a-zA-z]+://github[^\s]*,首先是[a-zA-z]+来匹配网络协议如http和https,然后是://github来滤除非GitHub的网页。
2)绘制不同类型论文给出代码个数直方图
data_with_code = data_with_code[data_with_code['code_flag'] > 0]
# 选择主要类别
data['categories'] = data['categories'].apply(lambda x: x.split(' ')[0])
data['categories'] = data['categories'].apply(lambda x: x.split('.')[0])
plt.figure(figsize=(12, 6))
data_with_code.groupby(['categories'])['code_flag'].count().plot(kind='bar')
这里注意源代码给的是data_with_code = data_with_code[data_with_code['code_flag'] == 1],我看了一下data_with_code[data_with_code['text'].str.findall(pattern).apply(len)],发现大于1的还是有一些文章的哈哈,这个是个挺重大的bug,把==1改成>0就好了。

实验结果

参考文献:
[1]. 正则表达式——菜鸟教程
[2]. fillna()函数详解
本文介绍了一项使用正则表达式对论文数据集进行分析的任务,包括统计不同分类论文的平均页数、图表个数及给出代码的论文数量,并展示了具体的实现步骤与结果。
630

被折叠的 条评论
为什么被折叠?



