轮廓系数(Silhouette Coefficient)是一种常用的评估聚类分析效果的指标,它能够帮助我们确定数据点是否被正确地分配到了相应的簇(cluster)中。轮廓系数同时考虑了簇内部的紧凑性和簇间的分离性,因此是一个综合性的评价标准。
轮廓系数的计算公式:
S(i)=b(i)−a(i)max{a(i),b(i)} S(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}} S(i)=max{a(i),b(i)}b(i)−a(i)
s(i)={1−a(i)b(i),a(i)<b(i)0,a(i)=b(i)b(i)a(i)−1,a(i)>b(i)s(i) = \begin{cases} 1-\frac{\mathrm{a(i)}}{\mathrm{b(i)}},& a(i)<b(i)\\ 0,& a(i)=b(i)\\ \frac{\mathrm{b(i)}}{\mathrm{a(i)}}-1,& a(i)>b(i) \end{cases}s(i)=⎩⎨⎧1−b(i)a(i),0,a(i)b(i)−1,a(i)<b(i)a(i)=b(i)a(i)>b(i)
其中:
- S(i)S(i)S(i) 是第 iii 个数据点的
轮廓系数。 - a(i)a(i)a(i) 表示第 iii 个
数据点与其所属簇中其他数据点的平均距离,反映簇的紧凑性(Cohesion)。这通常被称为“内聚度”。 - b(i)b(i)b(i) 表示第 iii 个
数据点与非所属簇中最近簇的数据点的平均距离,反映簇间的分离性(Separation)。这通常被称为“分离度”。
详细解释:
-
a(i)a(i)a(i): 这是样本点 iii
到同一簇中所有其他样本点的距离之和 除以 这些样本点的数量。它衡量了点 iii 在其簇内的“舒适度”,数值越小表明 iii 与簇内的其他点越接近,簇越紧凑。 -
b(i)b(i)b(i): 这是样本点 iii
到最近的其他簇中所有样本点的平均距离。它衡量了点 iii 与最邻近的其他簇的距离,数值越大表明 iii 与其它簇中的点相距较远,簇间的分离度越高。 -
max{a(i),b(i)}\max\{a(i), b(i)\}max{a(i),b(i)}: 这是 a(i)a(i)a(i) 和 b(i)b(i)b(i) 中较大的值,作为分母确保轮廓系数的值域在 [-1, 1] 之间。当 b(i)>a(i)b(i) > a(i)b(i)>a(i),表示样本点更接近于自己的簇,轮廓系数倾向于
正数;反之,如果 a(i)>b(i)a(i) > b(i)a(i)>b(i),则表示样本点可能被错误分类,轮廓系数倾向于负数。
轮廓系数的取值范围和解释:
- 当轮廓系数接近 1 时,这意味着 b(i)b(i)b(i) 远大于 a(i)a(i)a(i),即数据点 iii 在其所属
簇内紧密,与其他簇分离良好。 - 当轮廓系数接近 0 时,这意味着 a(i)a(i)a(i) 接近于 b(i)b(i)b(i),数据点 iii 在簇边界,或
簇内点间距离与簇间距离相当。 - 当轮廓系数接近 -1 时,这意味着 a(i)a(i)a(i) 远大于 b(i)b(i)b(i),数据点 iii
可能被错误地分配给了错误的簇。
为了评估整个聚类的效果,通常会计算所有数据点轮廓系数的平均值,这个平均值就作为整个聚类分析的轮廓系数。较高的平均轮廓系数意味着聚类效果较好。
37

被折叠的 条评论
为什么被折叠?



