Run TPU workloads in a Docker container

Docker containers make configuring applications easier by combining your code and all needed dependencies in one distributable package. You can run Docker containers within TPU VMs to simplify configuring and sharing your Cloud TPU applications. This document describes how to set up a Docker container for each ML framework supported by Cloud TPU.

Train a PyTorch model in a Docker container

TPU device

  1. Create Cloud TPU VM

    gcloud compute tpus tpu-vm create your-tpu-name \
    --zone=europe-west4-a \
    --accelerator-type=v2-8 \
    --version=tpu-ubuntu2204-base
  2. Connect to the TPU VM using SSH

    gcloud compute tpus tpu-vm ssh your-tpu-name \
    --zone=europe-west4-a
  3. Make sure your Google Cloud user has been granted the Artifact Registry Reader role. For more information, see Granting Artifact Registry roles.

  4. Start a container in the TPU VM using the nightly PyTorch/XLA image.

    sudo docker run -ti --rm --name your-container-name --privileged gcr.io/tpu-pytorch/xla:r2.0_3.8_tpuvm bash
  5. Configure TPU runtime

    There are two PyTorch/XLA runtime options: PJRT and XRT. We recommend you use PJRT unless you have a reason to use XRT. To learn more about the different runtime configurations, see you have a reason to use XRT. To learn more about the different runtime configurations, see the PJRT runtime documentation.

    PJRT

    export PJRT_DEVICE=TPU

    XRT

    export XRT_TPU_CONFIG="localservice;0;localhost:51011"
  6. Clone the PyTorch XLA repository

    git clone --recursive https://github.com/pytorch/xla.git
  7. Train ResNet50

    python3 xla/test/test_train_mp_imagenet.py --fake_data --model=resnet50 --num_epochs=1

When the training script completes, make sure you clean up the resources.

  1. Type exit to exit from the Docker container
  2. Type exit to exit from the TPU VM
  3. Delete the TPU VM
     $ gcloud compute tpus tpu-vm delete your-tpu-name --zone=europe-west4-a

TPU slice

When you run PyTorch code on a TPU slice, you must run your code on all TPU workers at the same time. One way to do this is to use the gcloud compute tpus tpu-vm ssh command with the --worker=all and --command flags. The following procedure shows you how create a Docker image to make setting up each TPU worker easier.

  1. Create a TPU VM

    gcloud compute tpus tpu-vm create your-tpu-name \
    --zone=us-central2-b \
    --accelerator-type=v4-32 \
    --version=tpu-ubuntu2204-base
  2. Add the current user to the docker group

    gcloud compute tpus tpu-vm ssh your-tpu-name \
    --zone=us-central2-b \
    --worker=all \
    --command="sudo usermod -a -G docker $USER"
  3. Clone the PyTorch XLA repository

    gcloud compute tpus tpu-vm ssh your-tpu-name --worker=all \
    --zone=us-central2-b \
    --command="git clone --recursive https://github.com/pytorch/xla.git"
  4. Run the training script in a container on all TPU workers.

    gcloud compute tpus tpu-vm ssh your-tpu-name --worker=all \
    --zone=us-central2-b \
    --command="docker run --rm --privileged --net=host  -v ~/xla:/xla -e PJRT_DEVICE=TPU us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:r2.6.0_3.10_tpuvm_cxx11 python /xla/test/test_train_mp_imagenet.py --fake_data --model=resnet50 --num_epochs=1"

    Docker command flags:

    • --rm remove the container after its process terminates.
    • --privileged exposes the TPU device to the container.
    • --net=host binds all of the container's ports to the TPU VM to allow communication between the hosts in the pod.
    • -e set environment variables.

When the training script completes, make sure you clean up the resources.

Delete the TPU VM using the following command:

$ gcloud compute tpus tpu-vm delete your-tpu-name \
  --zone=us-central2-b

Train a JAX model in a Docker container

TPU Device

  1. Create the TPU VM

    gcloud compute tpus tpu-vm create your-tpu-name \
    --zone=europe-west4-a \
    --accelerator-type=v2-8 \
    --version=tpu-ubuntu2204-base
  2. Connect to the TPU VM using SSH

    gcloud compute tpus tpu-vm ssh your-tpu-name  --zone=europe-west4-a
  3. Start Docker daemon in TPU VM

    sudo systemctl start docker
  4. Start Docker container

    sudo docker run --net=host -ti --rm --name your-container-name \
     --privileged us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:r2.6.0_3.10_tpuvm_cxx11 \
     python:3.10 bash
  5. Install JAX

    pip install jax[tpu]
  6. Install FLAX

    pip install --upgrade clu
    git clone https://github.com/google/flax.git
    pip install --user -e flax
  7. Install tensorflow and tensorflow-dataset packages

    pip install tensorflow
    pip install tensorflow-datasets
  8. Run the FLAX MNIST training script

    cd flax/examples/mnist
    python3 main.py --workdir=/tmp/mnist \
    --config=configs/default.py \
    --config.learning_rate=0.05 \
    --config.num_epochs=5

When the training script completes, make sure you clean up the resources.

  1. Type exit to exit from the Docker container
  2. Type exit to exit from the TPU VM
  3. Delete the TPU VM

    $ gcloud compute tpus tpu-vm delete your-tpu-name --zone=europe-west4-a

TPU slice

When you run JAX code on a TPU slice, you must run your JAX code on all TPU workers at the same time. One way to do this is to use the gcloud compute tpus tpu-vm ssh command with the --worker=all and --command flags. The following procedure shows you how create a Docker image to make setting up each TPU worker easier.

  1. Create a file named Dockerfile in your current directory and paste the following text

    FROM python:3.10
    RUN pip install jax[tpu]
    RUN pip install --upgrade clu
    RUN git clone https://github.com/google/flax.git
    RUN pip install --user -e flax
    WORKDIR ./flax/examples/mnist
  2. Prepare an Artifact Registry

    gcloud artifacts repositories create your-repo \
    --repository-format=docker \
    --location=europe-west4 --description="Docker repository" \
    --project=your-project
    
    gcloud artifacts repositories list \
    --project=your-project
    
    gcloud auth configure-docker europe-west4-docker.pkg.dev
  3. Build the Docker image

    docker build -t your-image-name .
  4. Add a tag to your Docker image before pushing it to the Artifact Registry. For more information on working with Artifact Registry, see Work with container images.

    docker tag your-image-name europe-west4-docker.pkg.dev/your-project/your-repo/your-image-name:your-tag
  5. Push your Docker image to the Artifact Registry

    docker push europe-west4-docker.pkg.dev/your-project/your-repo/your-image-name:your-tag
  6. Create a TPU VM

    gcloud compute tpus tpu-vm create your-tpu-name \
    --zone=europe-west4-a \
    --accelerator-type=v2-8 \
    --version=tpu-ubuntu2204-base
  7. Pull the Docker image from the Artifact Registry on all TPU workers.

    gcloud compute tpus tpu-vm ssh your-tpu-name --worker=all \
    --zone=europe-west4-a \
    --command="sudo usermod -a -G docker ${USER}"
    gcloud compute tpus tpu-vm ssh your-tpu-name --worker=all \
    --zone=europe-west4-a \
    --command="gcloud auth configure-docker europe-west4-docker.pkg.dev --quiet"
    gcloud compute tpus tpu-vm ssh your-tpu-name --worker=all \
    --zone=europe-west4-a \
    --command="docker pull europe-west4-docker.pkg.dev/your-project/your-repo/your-image-name:your-tag"
  8. Run the container on all TPU workers.

    gcloud compute tpus tpu-vm ssh your-tpu-name --worker=all \
    --zone=europe-west4-a \
    --command="docker run -ti -d --privileged --net=host --name your-container-name europe-west4-docker.pkg.dev/your-project/your-repo/your-image-name:your-tag bash"
  9. Run the training script on all TPU workers:

    gcloud compute tpus tpu-vm ssh your-tpu-name --worker=all \
    --zone=europe-west4-a \
    --command="docker exec --privileged your-container-name python3 main.py --workdir=/tmp/mnist \
    --config=configs/default.py \
    --config.learning_rate=0.05 \
    --config.num_epochs=5"

When the training script completes, make sure you clean up the resources.

  1. Shut down the container on all workers:

    gcloud compute tpus tpu-vm ssh your-tpu-name --worker=all \
    --zone=europe-west4-a \
    --command="docker kill your-container-name"
  2. Delete the TPU VM using the following command:

    $ gcloud compute tpus tpu-vm delete your-tpu-name \
    --zone=europe-west4-a

Train a JAX model in a Docker container using JAX Stable Stack

You can build the MaxText and MaxDiffusion Docker images using the JAX Stable Stack base image.

JAX Stable Stack provides a consistent environment for MaxText and MaxDiffusion by bundling JAX with core packages like orbax, flax, and optax, and libtpu.so. These libraries are tested to ensure compatibility and provide a stable foundation to build and run MaxText and MaxDiffusion. This eliminates potential conflicts due to incompatible package versions.

JAX Stable Stack includes a fully released and qualified libtpu.so, the core library that drives TPU program compilation, execution, and ICI network configuration. The libtpu release replaces the nightly build previously used by JAX, and ensures consistent functionality of XLA computations on TPU with PJRT-level qualification tests in HLO/StableHLO IRs.

To build the MaxText and MaxDiffusion Docker image with JAX Stable Stack, when you run the docker_build_dependency_image.sh script, set the MODE variable to stable_stack and set the BASEIMAGE variable to the base image you want to use.

docker_build_dependency_image.sh is located in the MaxDiffusion GitHub repo and in the MaxText GitHub repo. Clone the repository you want to use and use the docker_build_dependency_image.sh script from that repository to build the Docker image.

git clone https://github.com/AI-Hypercomputer/maxdiffusion.git
git clone https://github.com/AI-Hypercomputer/maxtext.git

The following command generates a Docker image for use with MaxText and MaxDiffusion using us-docker.pkg.dev/cloud-tpu-images/jax-stable-stack/tpu:jax0.4.35-rev1 as the base image. The bash docker_build_dependency_image.sh script can be found in the MaxDiffusion repository.

sudo bash docker_build_dependency_image.sh MODE=stable_stack BASEIMAGE=us-docker.pkg.dev/cloud-tpu-images/jax-stable-stack/tpu:jax0.4.35-rev1

For a list of available JAX Stable Stack base images, see JAX Stable Stack images in Artifact Registry.

What's next