1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
|
/****************************************************************************
**
** Copyright (C) 2013 Digia Plc and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/legal
**
** This file is part of the QtQml module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and Digia. For licensing terms and
** conditions see http://qt.digia.com/licensing. For further information
** use the contact form at http://qt.digia.com/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Digia gives you certain additional
** rights. These rights are described in the Digia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3.0 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU General Public License version 3.0 requirements will be
** met: http://www.gnu.org/copyleft/gpl.html.
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <qv4binop_p.h>
#include <qv4assembler_p.h>
#if ENABLE(ASSEMBLER)
using namespace QV4;
using namespace JIT;
namespace {
inline bool isPregOrConst(IR::Expr *e)
{
if (IR::Temp *t = e->asTemp())
return t->kind == IR::Temp::PhysicalRegister;
return e->asConst() != 0;
}
} // anonymous namespace
#define OP(op) \
{ isel_stringIfy(op), op, 0, 0, 0 }
#define OPCONTEXT(op) \
{ isel_stringIfy(op), 0, op, 0, 0 }
#define INLINE_OP(op, memOp, immOp) \
{ isel_stringIfy(op), op, 0, memOp, immOp }
#define INLINE_OPCONTEXT(op, memOp, immOp) \
{ isel_stringIfy(op), 0, op, memOp, immOp }
#define NULL_OP \
{ 0, 0, 0, 0, 0 }
const Binop::OpInfo Binop::operations[IR::LastAluOp + 1] = {
NULL_OP, // OpInvalid
NULL_OP, // OpIfTrue
NULL_OP, // OpNot
NULL_OP, // OpUMinus
NULL_OP, // OpUPlus
NULL_OP, // OpCompl
NULL_OP, // OpIncrement
NULL_OP, // OpDecrement
INLINE_OP(Runtime::bitAnd, &Binop::inline_and32, &Binop::inline_and32), // OpBitAnd
INLINE_OP(Runtime::bitOr, &Binop::inline_or32, &Binop::inline_or32), // OpBitOr
INLINE_OP(Runtime::bitXor, &Binop::inline_xor32, &Binop::inline_xor32), // OpBitXor
INLINE_OPCONTEXT(Runtime::add, &Binop::inline_add32, &Binop::inline_add32), // OpAdd
INLINE_OP(Runtime::sub, &Binop::inline_sub32, &Binop::inline_sub32), // OpSub
INLINE_OP(Runtime::mul, &Binop::inline_mul32, &Binop::inline_mul32), // OpMul
OP(Runtime::div), // OpDiv
OP(Runtime::mod), // OpMod
INLINE_OP(Runtime::shl, &Binop::inline_shl32, &Binop::inline_shl32), // OpLShift
INLINE_OP(Runtime::shr, &Binop::inline_shr32, &Binop::inline_shr32), // OpRShift
INLINE_OP(Runtime::ushr, &Binop::inline_ushr32, &Binop::inline_ushr32), // OpURShift
OP(Runtime::greaterThan), // OpGt
OP(Runtime::lessThan), // OpLt
OP(Runtime::greaterEqual), // OpGe
OP(Runtime::lessEqual), // OpLe
OP(Runtime::equal), // OpEqual
OP(Runtime::notEqual), // OpNotEqual
OP(Runtime::strictEqual), // OpStrictEqual
OP(Runtime::strictNotEqual), // OpStrictNotEqual
OPCONTEXT(Runtime::instanceof), // OpInstanceof
OPCONTEXT(Runtime::in), // OpIn
NULL_OP, // OpAnd
NULL_OP // OpOr
};
void Binop::generate(IR::Expr *lhs, IR::Expr *rhs, IR::Expr *target)
{
if (op != IR::OpMod
&& lhs->type == IR::DoubleType && rhs->type == IR::DoubleType
&& isPregOrConst(lhs) && isPregOrConst(rhs)) {
doubleBinop(lhs, rhs, target);
return;
}
if (lhs->type == IR::SInt32Type && rhs->type == IR::SInt32Type) {
if (int32Binop(lhs, rhs, target))
return;
}
Assembler::Jump done;
if (lhs->type != IR::StringType && rhs->type != IR::StringType)
done = genInlineBinop(lhs, rhs, target);
// TODO: inline var===null and var!==null
Binop::OpInfo info = Binop::operation(op);
if (op == IR::OpAdd &&
(lhs->type == IR::StringType || rhs->type == IR::StringType)) {
const Binop::OpInfo stringAdd = OPCONTEXT(Runtime::addString);
info = stringAdd;
}
if (info.fallbackImplementation) {
as->generateFunctionCallImp(target, info.name, info.fallbackImplementation,
Assembler::PointerToValue(lhs),
Assembler::PointerToValue(rhs));
} else if (info.contextImplementation) {
as->generateFunctionCallImp(target, info.name, info.contextImplementation,
Assembler::ContextRegister,
Assembler::PointerToValue(lhs),
Assembler::PointerToValue(rhs));
} else {
Q_ASSERT(!"unreachable");
}
if (done.isSet())
done.link(as);
}
void Binop::doubleBinop(IR::Expr *lhs, IR::Expr *rhs, IR::Expr *target)
{
Q_ASSERT(lhs->asConst() == 0 || rhs->asConst() == 0);
Q_ASSERT(isPregOrConst(lhs));
Q_ASSERT(isPregOrConst(rhs));
IR::Temp *targetTemp = target->asTemp();
Assembler::FPRegisterID targetReg;
if (targetTemp && targetTemp->kind == IR::Temp::PhysicalRegister)
targetReg = (Assembler::FPRegisterID) targetTemp->index;
else
targetReg = Assembler::FPGpr0;
switch (op) {
case IR::OpAdd:
as->addDouble(as->toDoubleRegister(lhs), as->toDoubleRegister(rhs),
targetReg);
break;
case IR::OpMul:
as->mulDouble(as->toDoubleRegister(lhs), as->toDoubleRegister(rhs),
targetReg);
break;
case IR::OpSub:
#if CPU(X86) || CPU(X86_64)
if (IR::Temp *rightTemp = rhs->asTemp()) {
if (rightTemp->kind == IR::Temp::PhysicalRegister && rightTemp->index == targetReg) {
as->moveDouble(targetReg, Assembler::FPGpr0);
as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
as->subDouble(Assembler::FPGpr0, targetReg);
break;
}
} else if (rhs->asConst() && targetReg == Assembler::FPGpr0) {
Q_ASSERT(lhs->asTemp());
Q_ASSERT(lhs->asTemp()->kind == IR::Temp::PhysicalRegister);
as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
Assembler::FPRegisterID reg = (Assembler::FPRegisterID) lhs->asTemp()->index;
as->moveDouble(as->toDoubleRegister(rhs, reg), reg);
as->subDouble(reg, targetReg);
break;
}
#endif
as->subDouble(as->toDoubleRegister(lhs), as->toDoubleRegister(rhs),
targetReg);
break;
case IR::OpDiv:
#if CPU(X86) || CPU(X86_64)
if (IR::Temp *rightTemp = rhs->asTemp()) {
if (rightTemp->kind == IR::Temp::PhysicalRegister && rightTemp->index == targetReg) {
as->moveDouble(targetReg, Assembler::FPGpr0);
as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
as->divDouble(Assembler::FPGpr0, targetReg);
break;
}
} else if (rhs->asConst() && targetReg == Assembler::FPGpr0) {
Q_ASSERT(lhs->asTemp());
Q_ASSERT(lhs->asTemp()->kind == IR::Temp::PhysicalRegister);
as->moveDouble(as->toDoubleRegister(lhs, targetReg), targetReg);
Assembler::FPRegisterID reg = (Assembler::FPRegisterID) lhs->asTemp()->index;
as->moveDouble(as->toDoubleRegister(rhs, reg), reg);
as->divDouble(reg, targetReg);
break;
}
#endif
as->divDouble(as->toDoubleRegister(lhs), as->toDoubleRegister(rhs),
targetReg);
break;
default: {
Q_ASSERT(target->type == IR::BoolType);
Assembler::Jump trueCase = as->branchDouble(false, op, lhs, rhs);
as->storeBool(false, target);
Assembler::Jump done = as->jump();
trueCase.link(as);
as->storeBool(true, target);
done.link(as);
} return;
}
if (!targetTemp || targetTemp->kind != IR::Temp::PhysicalRegister)
as->storeDouble(Assembler::FPGpr0, target);
}
bool Binop::int32Binop(IR::Expr *leftSource, IR::Expr *rightSource, IR::Expr *target)
{
Q_ASSERT(leftSource->type == IR::SInt32Type);
IR::Temp *targetTemp = target->asTemp();
Assembler::RegisterID targetReg = Assembler::ReturnValueRegister;
if (targetTemp && targetTemp->kind == IR::Temp::PhysicalRegister) {
// We try to load leftSource into the target's register, but we can't do that if
// the target register is the same as rightSource.
IR::Temp *rhs = rightSource->asTemp();
if (!rhs || rhs->kind != IR::Temp::PhysicalRegister || rhs->index != targetTemp->index)
targetReg = (Assembler::RegisterID) targetTemp->index;
}
switch (op) {
case IR::OpBitAnd: {
Q_ASSERT(rightSource->type == IR::SInt32Type);
if (rightSource->asTemp() && rightSource->asTemp()->kind == IR::Temp::PhysicalRegister
&& targetTemp
&& targetTemp->kind == IR::Temp::PhysicalRegister
&& targetTemp->index == rightSource->asTemp()->index) {
as->and32(as->toInt32Register(leftSource, Assembler::ScratchRegister),
(Assembler::RegisterID) targetTemp->index);
return true;
}
as->and32(as->toInt32Register(leftSource, targetReg),
as->toInt32Register(rightSource, Assembler::ScratchRegister),
targetReg);
as->storeInt32(targetReg, target);
} return true;
case IR::OpBitOr: {
Q_ASSERT(rightSource->type == IR::SInt32Type);
if (rightSource->asTemp() && rightSource->asTemp()->kind == IR::Temp::PhysicalRegister
&& targetTemp
&& targetTemp->kind == IR::Temp::PhysicalRegister
&& targetTemp->index == rightSource->asTemp()->index) {
as->or32(as->toInt32Register(leftSource, Assembler::ScratchRegister),
(Assembler::RegisterID) targetTemp->index);
return true;
}
as->or32(as->toInt32Register(leftSource, targetReg),
as->toInt32Register(rightSource, Assembler::ScratchRegister),
targetReg);
as->storeInt32(targetReg, target);
} return true;
case IR::OpBitXor: {
Q_ASSERT(rightSource->type == IR::SInt32Type);
if (rightSource->asTemp() && rightSource->asTemp()->kind == IR::Temp::PhysicalRegister
&& targetTemp
&& targetTemp->kind == IR::Temp::PhysicalRegister
&& targetTemp->index == rightSource->asTemp()->index) {
as->xor32(as->toInt32Register(leftSource, Assembler::ScratchRegister),
(Assembler::RegisterID) targetTemp->index);
return true;
}
as->xor32(as->toInt32Register(leftSource, targetReg),
as->toInt32Register(rightSource, Assembler::ScratchRegister),
targetReg);
as->storeInt32(targetReg, target);
} return true;
case IR::OpLShift: {
Q_ASSERT(rightSource->type == IR::SInt32Type);
if (IR::Const *c = rightSource->asConst()) {
if (int(c->value) == 0)
as->move(as->toInt32Register(leftSource, Assembler::ReturnValueRegister), targetReg);
else
as->lshift32(as->toInt32Register(leftSource, Assembler::ReturnValueRegister),
Assembler::TrustedImm32(int(c->value) & 0x1f), targetReg);
} else {
as->move(as->toInt32Register(rightSource, Assembler::ScratchRegister),
Assembler::ScratchRegister);
#if CPU(ARM) || CPU(X86) || CPU(X86_64)
// The ARM assembler will generate this for us, and Intel will do it on the CPU.
#else
as->and32(Assembler::TrustedImm32(0x1f), Assembler::ScratchRegister);
#endif
as->lshift32(as->toInt32Register(leftSource, targetReg), Assembler::ScratchRegister, targetReg);
}
as->storeInt32(targetReg, target);
} return true;
case IR::OpRShift: {
Q_ASSERT(rightSource->type == IR::SInt32Type);
if (IR::Const *c = rightSource->asConst()) {
if (int(c->value) == 0)
as->move(as->toInt32Register(leftSource, Assembler::ReturnValueRegister), targetReg);
else
as->rshift32(as->toInt32Register(leftSource, Assembler::ReturnValueRegister),
Assembler::TrustedImm32(int(c->value) & 0x1f), targetReg);
} else {
as->move(as->toInt32Register(rightSource, Assembler::ScratchRegister),
Assembler::ScratchRegister);
#if CPU(ARM) || CPU(X86) || CPU(X86_64)
// The ARM assembler will generate this for us, and Intel will do it on the CPU.
#else
as->and32(Assembler::TrustedImm32(0x1f), Assembler::ScratchRegister);
#endif
as->rshift32(as->toInt32Register(leftSource, targetReg), Assembler::ScratchRegister, targetReg);
}
as->storeInt32(targetReg, target);
} return true;
case IR::OpURShift:
Q_ASSERT(rightSource->type == IR::SInt32Type);
if (IR::Const *c = rightSource->asConst()) {
if (int(c->value) == 0)
as->move(as->toInt32Register(leftSource, Assembler::ReturnValueRegister), targetReg);
else
as->urshift32(as->toInt32Register(leftSource, Assembler::ReturnValueRegister),
Assembler::TrustedImm32(int(c->value) & 0x1f), targetReg);
} else {
as->move(as->toInt32Register(rightSource, Assembler::ScratchRegister),
Assembler::ScratchRegister);
#if CPU(ARM) || CPU(X86) || CPU(X86_64)
// The ARM assembler will generate this for us, and Intel will do it on the CPU.
#else
as->and32(Assembler::TrustedImm32(0x1f), Assembler::ScratchRegister);
#endif
as->urshift32(as->toInt32Register(leftSource, targetReg), Assembler::ScratchRegister, targetReg);
}
as->storeUInt32(targetReg, target);
return true;
case IR::OpAdd: {
Q_ASSERT(rightSource->type == IR::SInt32Type);
as->add32(as->toInt32Register(leftSource, targetReg),
as->toInt32Register(rightSource, Assembler::ScratchRegister),
targetReg);
as->storeInt32(targetReg, target);
} return true;
case IR::OpSub: {
Q_ASSERT(rightSource->type == IR::SInt32Type);
if (rightSource->asTemp() && rightSource->asTemp()->kind == IR::Temp::PhysicalRegister
&& targetTemp
&& targetTemp->kind == IR::Temp::PhysicalRegister
&& targetTemp->index == rightSource->asTemp()->index) {
Assembler::RegisterID targetReg = (Assembler::RegisterID) targetTemp->index;
as->move(targetReg, Assembler::ScratchRegister);
as->move(as->toInt32Register(leftSource, targetReg), targetReg);
as->sub32(Assembler::ScratchRegister, targetReg);
as->storeInt32(targetReg, target);
return true;
}
as->move(as->toInt32Register(leftSource, targetReg), targetReg);
as->sub32(as->toInt32Register(rightSource, Assembler::ScratchRegister), targetReg);
as->storeInt32(targetReg, target);
} return true;
case IR::OpMul: {
Q_ASSERT(rightSource->type == IR::SInt32Type);
as->mul32(as->toInt32Register(leftSource, targetReg),
as->toInt32Register(rightSource, Assembler::ScratchRegister),
targetReg);
as->storeInt32(targetReg, target);
} return true;
default:
return false;
}
}
static inline Assembler::FPRegisterID getFreeFPReg(IR::Expr *shouldNotOverlap, unsigned hint)
{
if (IR::Temp *t = shouldNotOverlap->asTemp())
if (t->type == IR::DoubleType)
if (t->kind == IR::Temp::PhysicalRegister)
if (t->index == hint)
return Assembler::FPRegisterID(hint + 1);
return Assembler::FPRegisterID(hint);
}
Assembler::Jump Binop::genInlineBinop(IR::Expr *leftSource, IR::Expr *rightSource, IR::Expr *target)
{
Assembler::Jump done;
// Try preventing a call for a few common binary operations. This is used in two cases:
// - no register allocation was performed (not available for the platform, or the IR was
// not transformed into SSA)
// - type inference found that either or both operands can be of non-number type, and the
// register allocator will have prepared for a call (meaning: all registers that do not
// hold operands are spilled to the stack, which makes them available here)
// Note: FPGPr0 can still not be used, because uint32->double conversion uses it as a scratch
// register.
switch (op) {
case IR::OpAdd: {
Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2);
Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4);
Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg);
Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg);
as->addDouble(rReg, lReg);
as->storeDouble(lReg, target);
done = as->jump();
if (leftIsNoDbl.isSet())
leftIsNoDbl.link(as);
if (rightIsNoDbl.isSet())
rightIsNoDbl.link(as);
} break;
case IR::OpMul: {
Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2);
Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4);
Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg);
Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg);
as->mulDouble(rReg, lReg);
as->storeDouble(lReg, target);
done = as->jump();
if (leftIsNoDbl.isSet())
leftIsNoDbl.link(as);
if (rightIsNoDbl.isSet())
rightIsNoDbl.link(as);
} break;
case IR::OpSub: {
Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2);
Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4);
Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg);
Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg);
as->subDouble(rReg, lReg);
as->storeDouble(lReg, target);
done = as->jump();
if (leftIsNoDbl.isSet())
leftIsNoDbl.link(as);
if (rightIsNoDbl.isSet())
rightIsNoDbl.link(as);
} break;
case IR::OpDiv: {
Assembler::FPRegisterID lReg = getFreeFPReg(rightSource, 2);
Assembler::FPRegisterID rReg = getFreeFPReg(leftSource, 4);
Assembler::Jump leftIsNoDbl = as->genTryDoubleConversion(leftSource, lReg);
Assembler::Jump rightIsNoDbl = as->genTryDoubleConversion(rightSource, rReg);
as->divDouble(rReg, lReg);
as->storeDouble(lReg, target);
done = as->jump();
if (leftIsNoDbl.isSet())
leftIsNoDbl.link(as);
if (rightIsNoDbl.isSet())
rightIsNoDbl.link(as);
} break;
default:
break;
}
return done;
}
#endif
|