PostgreSQL Source Code git master
f2s.c
Go to the documentation of this file.
1/*---------------------------------------------------------------------------
2 *
3 * Ryu floating-point output for single precision.
4 *
5 * Portions Copyright (c) 2018-2025, PostgreSQL Global Development Group
6 *
7 * IDENTIFICATION
8 * src/common/f2s.c
9 *
10 * This is a modification of code taken from github.com/ulfjack/ryu under the
11 * terms of the Boost license (not the Apache license). The original copyright
12 * notice follows:
13 *
14 * Copyright 2018 Ulf Adams
15 *
16 * The contents of this file may be used under the terms of the Apache
17 * License, Version 2.0.
18 *
19 * (See accompanying file LICENSE-Apache or copy at
20 * http://www.apache.org/licenses/LICENSE-2.0)
21 *
22 * Alternatively, the contents of this file may be used under the terms of the
23 * Boost Software License, Version 1.0.
24 *
25 * (See accompanying file LICENSE-Boost or copy at
26 * https://www.boost.org/LICENSE_1_0.txt)
27 *
28 * Unless required by applicable law or agreed to in writing, this software is
29 * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
30 * KIND, either express or implied.
31 *
32 *---------------------------------------------------------------------------
33 */
34
35#ifndef FRONTEND
36#include "postgres.h"
37#else
38#include "postgres_fe.h"
39#endif
40
41#include "common/shortest_dec.h"
42#include "digit_table.h"
43#include "ryu_common.h"
44
45#define FLOAT_MANTISSA_BITS 23
46#define FLOAT_EXPONENT_BITS 8
47#define FLOAT_BIAS 127
48
49/*
50 * This table is generated (by the upstream) by PrintFloatLookupTable,
51 * and modified (by us) to add UINT64CONST.
52 */
53#define FLOAT_POW5_INV_BITCOUNT 59
54static const uint64 FLOAT_POW5_INV_SPLIT[31] = {
55 UINT64CONST(576460752303423489), UINT64CONST(461168601842738791), UINT64CONST(368934881474191033), UINT64CONST(295147905179352826),
56 UINT64CONST(472236648286964522), UINT64CONST(377789318629571618), UINT64CONST(302231454903657294), UINT64CONST(483570327845851670),
57 UINT64CONST(386856262276681336), UINT64CONST(309485009821345069), UINT64CONST(495176015714152110), UINT64CONST(396140812571321688),
58 UINT64CONST(316912650057057351), UINT64CONST(507060240091291761), UINT64CONST(405648192073033409), UINT64CONST(324518553658426727),
59 UINT64CONST(519229685853482763), UINT64CONST(415383748682786211), UINT64CONST(332306998946228969), UINT64CONST(531691198313966350),
60 UINT64CONST(425352958651173080), UINT64CONST(340282366920938464), UINT64CONST(544451787073501542), UINT64CONST(435561429658801234),
61 UINT64CONST(348449143727040987), UINT64CONST(557518629963265579), UINT64CONST(446014903970612463), UINT64CONST(356811923176489971),
62 UINT64CONST(570899077082383953), UINT64CONST(456719261665907162), UINT64CONST(365375409332725730)
63};
64#define FLOAT_POW5_BITCOUNT 61
65static const uint64 FLOAT_POW5_SPLIT[47] = {
66 UINT64CONST(1152921504606846976), UINT64CONST(1441151880758558720), UINT64CONST(1801439850948198400), UINT64CONST(2251799813685248000),
67 UINT64CONST(1407374883553280000), UINT64CONST(1759218604441600000), UINT64CONST(2199023255552000000), UINT64CONST(1374389534720000000),
68 UINT64CONST(1717986918400000000), UINT64CONST(2147483648000000000), UINT64CONST(1342177280000000000), UINT64CONST(1677721600000000000),
69 UINT64CONST(2097152000000000000), UINT64CONST(1310720000000000000), UINT64CONST(1638400000000000000), UINT64CONST(2048000000000000000),
70 UINT64CONST(1280000000000000000), UINT64CONST(1600000000000000000), UINT64CONST(2000000000000000000), UINT64CONST(1250000000000000000),
71 UINT64CONST(1562500000000000000), UINT64CONST(1953125000000000000), UINT64CONST(1220703125000000000), UINT64CONST(1525878906250000000),
72 UINT64CONST(1907348632812500000), UINT64CONST(1192092895507812500), UINT64CONST(1490116119384765625), UINT64CONST(1862645149230957031),
73 UINT64CONST(1164153218269348144), UINT64CONST(1455191522836685180), UINT64CONST(1818989403545856475), UINT64CONST(2273736754432320594),
74 UINT64CONST(1421085471520200371), UINT64CONST(1776356839400250464), UINT64CONST(2220446049250313080), UINT64CONST(1387778780781445675),
75 UINT64CONST(1734723475976807094), UINT64CONST(2168404344971008868), UINT64CONST(1355252715606880542), UINT64CONST(1694065894508600678),
76 UINT64CONST(2117582368135750847), UINT64CONST(1323488980084844279), UINT64CONST(1654361225106055349), UINT64CONST(2067951531382569187),
77 UINT64CONST(1292469707114105741), UINT64CONST(1615587133892632177), UINT64CONST(2019483917365790221)
78};
79
80static inline uint32
82{
83 uint32 count = 0;
84
85 for (;;)
86 {
87 Assert(value != 0);
88 const uint32 q = value / 5;
89 const uint32 r = value % 5;
90
91 if (r != 0)
92 break;
93
94 value = q;
95 ++count;
96 }
97 return count;
98}
99
100/* Returns true if value is divisible by 5^p. */
101static inline bool
103{
104 return pow5Factor(value) >= p;
105}
106
107/* Returns true if value is divisible by 2^p. */
108static inline bool
110{
111 /* return __builtin_ctz(value) >= p; */
112 return (value & ((1u << p) - 1)) == 0;
113}
114
115/*
116 * It seems to be slightly faster to avoid uint128_t here, although the
117 * generated code for uint128_t looks slightly nicer.
118 */
119static inline uint32
120mulShift(const uint32 m, const uint64 factor, const int32 shift)
121{
122 /*
123 * The casts here help MSVC to avoid calls to the __allmul library
124 * function.
125 */
126 const uint32 factorLo = (uint32) (factor);
127 const uint32 factorHi = (uint32) (factor >> 32);
128 const uint64 bits0 = (uint64) m * factorLo;
129 const uint64 bits1 = (uint64) m * factorHi;
130
131 Assert(shift > 32);
132
133#ifdef RYU_32_BIT_PLATFORM
134
135 /*
136 * On 32-bit platforms we can avoid a 64-bit shift-right since we only
137 * need the upper 32 bits of the result and the shift value is > 32.
138 */
139 const uint32 bits0Hi = (uint32) (bits0 >> 32);
140 uint32 bits1Lo = (uint32) (bits1);
141 uint32 bits1Hi = (uint32) (bits1 >> 32);
142
143 bits1Lo += bits0Hi;
144 bits1Hi += (bits1Lo < bits0Hi);
145
146 const int32 s = shift - 32;
147
148 return (bits1Hi << (32 - s)) | (bits1Lo >> s);
149
150#else /* RYU_32_BIT_PLATFORM */
151
152 const uint64 sum = (bits0 >> 32) + bits1;
153 const uint64 shiftedSum = sum >> (shift - 32);
154
155 Assert(shiftedSum <= PG_UINT32_MAX);
156 return (uint32) shiftedSum;
157
158#endif /* RYU_32_BIT_PLATFORM */
159}
160
161static inline uint32
162mulPow5InvDivPow2(const uint32 m, const uint32 q, const int32 j)
163{
164 return mulShift(m, FLOAT_POW5_INV_SPLIT[q], j);
165}
166
167static inline uint32
168mulPow5divPow2(const uint32 m, const uint32 i, const int32 j)
169{
170 return mulShift(m, FLOAT_POW5_SPLIT[i], j);
171}
172
173static inline uint32
175{
176 /* Function precondition: v is not a 10-digit number. */
177 /* (9 digits are sufficient for round-tripping.) */
178 Assert(v < 1000000000);
179 if (v >= 100000000)
180 {
181 return 9;
182 }
183 if (v >= 10000000)
184 {
185 return 8;
186 }
187 if (v >= 1000000)
188 {
189 return 7;
190 }
191 if (v >= 100000)
192 {
193 return 6;
194 }
195 if (v >= 10000)
196 {
197 return 5;
198 }
199 if (v >= 1000)
200 {
201 return 4;
202 }
203 if (v >= 100)
204 {
205 return 3;
206 }
207 if (v >= 10)
208 {
209 return 2;
210 }
211 return 1;
212}
213
214/* A floating decimal representing m * 10^e. */
216{
220
221static inline floating_decimal_32
222f2d(const uint32 ieeeMantissa, const uint32 ieeeExponent)
223{
224 int32 e2;
225 uint32 m2;
226
227 if (ieeeExponent == 0)
228 {
229 /* We subtract 2 so that the bounds computation has 2 additional bits. */
230 e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
231 m2 = ieeeMantissa;
232 }
233 else
234 {
235 e2 = ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
236 m2 = (1u << FLOAT_MANTISSA_BITS) | ieeeMantissa;
237 }
238
239#if STRICTLY_SHORTEST
240 const bool even = (m2 & 1) == 0;
241 const bool acceptBounds = even;
242#else
243 const bool acceptBounds = false;
244#endif
245
246 /* Step 2: Determine the interval of legal decimal representations. */
247 const uint32 mv = 4 * m2;
248 const uint32 mp = 4 * m2 + 2;
249
250 /* Implicit bool -> int conversion. True is 1, false is 0. */
251 const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
252 const uint32 mm = 4 * m2 - 1 - mmShift;
253
254 /* Step 3: Convert to a decimal power base using 64-bit arithmetic. */
255 uint32 vr,
256 vp,
257 vm;
258 int32 e10;
259 bool vmIsTrailingZeros = false;
260 bool vrIsTrailingZeros = false;
261 uint8 lastRemovedDigit = 0;
262
263 if (e2 >= 0)
264 {
265 const uint32 q = log10Pow2(e2);
266
267 e10 = q;
268
269 const int32 k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q) - 1;
270 const int32 i = -e2 + q + k;
271
272 vr = mulPow5InvDivPow2(mv, q, i);
273 vp = mulPow5InvDivPow2(mp, q, i);
274 vm = mulPow5InvDivPow2(mm, q, i);
275
276 if (q != 0 && (vp - 1) / 10 <= vm / 10)
277 {
278 /*
279 * We need to know one removed digit even if we are not going to
280 * loop below. We could use q = X - 1 above, except that would
281 * require 33 bits for the result, and we've found that 32-bit
282 * arithmetic is faster even on 64-bit machines.
283 */
284 const int32 l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q - 1) - 1;
285
286 lastRemovedDigit = (uint8) (mulPow5InvDivPow2(mv, q - 1, -e2 + q - 1 + l) % 10);
287 }
288 if (q <= 9)
289 {
290 /*
291 * The largest power of 5 that fits in 24 bits is 5^10, but q <= 9
292 * seems to be safe as well.
293 *
294 * Only one of mp, mv, and mm can be a multiple of 5, if any.
295 */
296 if (mv % 5 == 0)
297 {
298 vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
299 }
300 else if (acceptBounds)
301 {
302 vmIsTrailingZeros = multipleOfPowerOf5(mm, q);
303 }
304 else
305 {
306 vp -= multipleOfPowerOf5(mp, q);
307 }
308 }
309 }
310 else
311 {
312 const uint32 q = log10Pow5(-e2);
313
314 e10 = q + e2;
315
316 const int32 i = -e2 - q;
317 const int32 k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
318 int32 j = q - k;
319
320 vr = mulPow5divPow2(mv, i, j);
321 vp = mulPow5divPow2(mp, i, j);
322 vm = mulPow5divPow2(mm, i, j);
323
324 if (q != 0 && (vp - 1) / 10 <= vm / 10)
325 {
326 j = q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
327 lastRemovedDigit = (uint8) (mulPow5divPow2(mv, i + 1, j) % 10);
328 }
329 if (q <= 1)
330 {
331 /*
332 * {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q
333 * trailing 0 bits.
334 */
335 /* mv = 4 * m2, so it always has at least two trailing 0 bits. */
336 vrIsTrailingZeros = true;
337 if (acceptBounds)
338 {
339 /*
340 * mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff
341 * mmShift == 1.
342 */
343 vmIsTrailingZeros = mmShift == 1;
344 }
345 else
346 {
347 /*
348 * mp = mv + 2, so it always has at least one trailing 0 bit.
349 */
350 --vp;
351 }
352 }
353 else if (q < 31)
354 {
355 /* TODO(ulfjack):Use a tighter bound here. */
356 vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1);
357 }
358 }
359
360 /*
361 * Step 4: Find the shortest decimal representation in the interval of
362 * legal representations.
363 */
364 uint32 removed = 0;
366
367 if (vmIsTrailingZeros || vrIsTrailingZeros)
368 {
369 /* General case, which happens rarely (~4.0%). */
370 while (vp / 10 > vm / 10)
371 {
372 vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0;
373 vrIsTrailingZeros &= lastRemovedDigit == 0;
374 lastRemovedDigit = (uint8) (vr % 10);
375 vr /= 10;
376 vp /= 10;
377 vm /= 10;
378 ++removed;
379 }
380 if (vmIsTrailingZeros)
381 {
382 while (vm % 10 == 0)
383 {
384 vrIsTrailingZeros &= lastRemovedDigit == 0;
385 lastRemovedDigit = (uint8) (vr % 10);
386 vr /= 10;
387 vp /= 10;
388 vm /= 10;
389 ++removed;
390 }
391 }
392
393 if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
394 {
395 /* Round even if the exact number is .....50..0. */
396 lastRemovedDigit = 4;
397 }
398
399 /*
400 * We need to take vr + 1 if vr is outside bounds or we need to round
401 * up.
402 */
403 output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
404 }
405 else
406 {
407 /*
408 * Specialized for the common case (~96.0%). Percentages below are
409 * relative to this.
410 *
411 * Loop iterations below (approximately): 0: 13.6%, 1: 70.7%, 2:
412 * 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
413 */
414 while (vp / 10 > vm / 10)
415 {
416 lastRemovedDigit = (uint8) (vr % 10);
417 vr /= 10;
418 vp /= 10;
419 vm /= 10;
420 ++removed;
421 }
422
423 /*
424 * We need to take vr + 1 if vr is outside bounds or we need to round
425 * up.
426 */
427 output = vr + (vr == vm || lastRemovedDigit >= 5);
428 }
429
430 const int32 exp = e10 + removed;
431
433
434 fd.exponent = exp;
435 fd.mantissa = output;
436 return fd;
437}
438
439static inline int
440to_chars_f(const floating_decimal_32 v, const uint32 olength, char *const result)
441{
442 /* Step 5: Print the decimal representation. */
443 int index = 0;
444
446 int32 exp = v.exponent;
447
448 /*----
449 * On entry, mantissa * 10^exp is the result to be output.
450 * Caller has already done the - sign if needed.
451 *
452 * We want to insert the point somewhere depending on the output length
453 * and exponent, which might mean adding zeros:
454 *
455 * exp | format
456 * 1+ | ddddddddd000000
457 * 0 | ddddddddd
458 * -1 .. -len+1 | dddddddd.d to d.ddddddddd
459 * -len ... | 0.ddddddddd to 0.000dddddd
460 */
461 uint32 i = 0;
462 int32 nexp = exp + olength;
463
464 if (nexp <= 0)
465 {
466 /* -nexp is number of 0s to add after '.' */
467 Assert(nexp >= -3);
468 /* 0.000ddddd */
469 index = 2 - nexp;
470 /* copy 8 bytes rather than 5 to let compiler optimize */
471 memcpy(result, "0.000000", 8);
472 }
473 else if (exp < 0)
474 {
475 /*
476 * dddd.dddd; leave space at the start and move the '.' in after
477 */
478 index = 1;
479 }
480 else
481 {
482 /*
483 * We can save some code later by pre-filling with zeros. We know that
484 * there can be no more than 6 output digits in this form, otherwise
485 * we would not choose fixed-point output. memset 8 rather than 6
486 * bytes to let the compiler optimize it.
487 */
488 Assert(exp < 6 && exp + olength <= 6);
489 memset(result, '0', 8);
490 }
491
492 while (output >= 10000)
493 {
494 const uint32 c = output - 10000 * (output / 10000);
495 const uint32 c0 = (c % 100) << 1;
496 const uint32 c1 = (c / 100) << 1;
497
498 output /= 10000;
499
500 memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
501 memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
502 i += 4;
503 }
504 if (output >= 100)
505 {
506 const uint32 c = (output % 100) << 1;
507
508 output /= 100;
509 memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
510 i += 2;
511 }
512 if (output >= 10)
513 {
514 const uint32 c = output << 1;
515
516 memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
517 }
518 else
519 {
520 result[index] = (char) ('0' + output);
521 }
522
523 if (index == 1)
524 {
525 /*
526 * nexp is 1..6 here, representing the number of digits before the
527 * point. A value of 7+ is not possible because we switch to
528 * scientific notation when the display exponent reaches 6.
529 */
530 Assert(nexp < 7);
531 /* gcc only seems to want to optimize memmove for small 2^n */
532 if (nexp & 4)
533 {
534 memmove(result + index - 1, result + index, 4);
535 index += 4;
536 }
537 if (nexp & 2)
538 {
539 memmove(result + index - 1, result + index, 2);
540 index += 2;
541 }
542 if (nexp & 1)
543 {
544 result[index - 1] = result[index];
545 }
546 result[nexp] = '.';
547 index = olength + 1;
548 }
549 else if (exp >= 0)
550 {
551 /* we supplied the trailing zeros earlier, now just set the length. */
552 index = olength + exp;
553 }
554 else
555 {
556 index = olength + (2 - nexp);
557 }
558
559 return index;
560}
561
562static inline int
563to_chars(const floating_decimal_32 v, const bool sign, char *const result)
564{
565 /* Step 5: Print the decimal representation. */
566 int index = 0;
567
569 uint32 olength = decimalLength(output);
570 int32 exp = v.exponent + olength - 1;
571
572 if (sign)
573 result[index++] = '-';
574
575 /*
576 * The thresholds for fixed-point output are chosen to match printf
577 * defaults. Beware that both the code of to_chars_f and the value of
578 * FLOAT_SHORTEST_DECIMAL_LEN are sensitive to these thresholds.
579 */
580 if (exp >= -4 && exp < 6)
581 return to_chars_f(v, olength, result + index) + sign;
582
583 /*
584 * If v.exponent is exactly 0, we might have reached here via the small
585 * integer fast path, in which case v.mantissa might contain trailing
586 * (decimal) zeros. For scientific notation we need to move these zeros
587 * into the exponent. (For fixed point this doesn't matter, which is why
588 * we do this here rather than above.)
589 *
590 * Since we already calculated the display exponent (exp) above based on
591 * the old decimal length, that value does not change here. Instead, we
592 * just reduce the display length for each digit removed.
593 *
594 * If we didn't get here via the fast path, the raw exponent will not
595 * usually be 0, and there will be no trailing zeros, so we pay no more
596 * than one div10/multiply extra cost. We claw back half of that by
597 * checking for divisibility by 2 before dividing by 10.
598 */
599 if (v.exponent == 0)
600 {
601 while ((output & 1) == 0)
602 {
603 const uint32 q = output / 10;
604 const uint32 r = output - 10 * q;
605
606 if (r != 0)
607 break;
608 output = q;
609 --olength;
610 }
611 }
612
613 /*----
614 * Print the decimal digits.
615 * The following code is equivalent to:
616 *
617 * for (uint32 i = 0; i < olength - 1; ++i) {
618 * const uint32 c = output % 10; output /= 10;
619 * result[index + olength - i] = (char) ('0' + c);
620 * }
621 * result[index] = '0' + output % 10;
622 */
623 uint32 i = 0;
624
625 while (output >= 10000)
626 {
627 const uint32 c = output - 10000 * (output / 10000);
628 const uint32 c0 = (c % 100) << 1;
629 const uint32 c1 = (c / 100) << 1;
630
631 output /= 10000;
632
633 memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
634 memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
635 i += 4;
636 }
637 if (output >= 100)
638 {
639 const uint32 c = (output % 100) << 1;
640
641 output /= 100;
642 memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
643 i += 2;
644 }
645 if (output >= 10)
646 {
647 const uint32 c = output << 1;
648
649 /*
650 * We can't use memcpy here: the decimal dot goes between these two
651 * digits.
652 */
653 result[index + olength - i] = DIGIT_TABLE[c + 1];
654 result[index] = DIGIT_TABLE[c];
655 }
656 else
657 {
658 result[index] = (char) ('0' + output);
659 }
660
661 /* Print decimal point if needed. */
662 if (olength > 1)
663 {
664 result[index + 1] = '.';
665 index += olength + 1;
666 }
667 else
668 {
669 ++index;
670 }
671
672 /* Print the exponent. */
673 result[index++] = 'e';
674 if (exp < 0)
675 {
676 result[index++] = '-';
677 exp = -exp;
678 }
679 else
680 result[index++] = '+';
681
682 memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
683 index += 2;
684
685 return index;
686}
687
688static inline bool
689f2d_small_int(const uint32 ieeeMantissa,
690 const uint32 ieeeExponent,
692{
693 const int32 e2 = (int32) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS;
694
695 /*
696 * Avoid using multiple "return false;" here since it tends to provoke the
697 * compiler into inlining multiple copies of f2d, which is undesirable.
698 */
699
700 if (e2 >= -FLOAT_MANTISSA_BITS && e2 <= 0)
701 {
702 /*----
703 * Since 2^23 <= m2 < 2^24 and 0 <= -e2 <= 23:
704 * 1 <= f = m2 / 2^-e2 < 2^24.
705 *
706 * Test if the lower -e2 bits of the significand are 0, i.e. whether
707 * the fraction is 0. We can use ieeeMantissa here, since the implied
708 * 1 bit can never be tested by this; the implied 1 can only be part
709 * of a fraction if e2 < -FLOAT_MANTISSA_BITS which we already
710 * checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -24)
711 */
712 const uint32 mask = (1U << -e2) - 1;
713 const uint32 fraction = ieeeMantissa & mask;
714
715 if (fraction == 0)
716 {
717 /*----
718 * f is an integer in the range [1, 2^24).
719 * Note: mantissa might contain trailing (decimal) 0's.
720 * Note: since 2^24 < 10^9, there is no need to adjust
721 * decimalLength().
722 */
723 const uint32 m2 = (1U << FLOAT_MANTISSA_BITS) | ieeeMantissa;
724
725 v->mantissa = m2 >> -e2;
726 v->exponent = 0;
727 return true;
728 }
729 }
730
731 return false;
732}
733
734/*
735 * Store the shortest decimal representation of the given float as an
736 * UNTERMINATED string in the caller's supplied buffer (which must be at least
737 * FLOAT_SHORTEST_DECIMAL_LEN-1 bytes long).
738 *
739 * Returns the number of bytes stored.
740 */
741int
742float_to_shortest_decimal_bufn(float f, char *result)
743{
744 /*
745 * Step 1: Decode the floating-point number, and unify normalized and
746 * subnormal cases.
747 */
748 const uint32 bits = float_to_bits(f);
749
750 /* Decode bits into sign, mantissa, and exponent. */
751 const bool ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
752 const uint32 ieeeMantissa = bits & ((1u << FLOAT_MANTISSA_BITS) - 1);
753 const uint32 ieeeExponent = (bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1);
754
755 /* Case distinction; exit early for the easy cases. */
756 if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0))
757 {
758 return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0));
759 }
760
762 const bool isSmallInt = f2d_small_int(ieeeMantissa, ieeeExponent, &v);
763
764 if (!isSmallInt)
765 {
766 v = f2d(ieeeMantissa, ieeeExponent);
767 }
768
769 return to_chars(v, ieeeSign, result);
770}
771
772/*
773 * Store the shortest decimal representation of the given float as a
774 * null-terminated string in the caller's supplied buffer (which must be at
775 * least FLOAT_SHORTEST_DECIMAL_LEN bytes long).
776 *
777 * Returns the string length.
778 */
779int
780float_to_shortest_decimal_buf(float f, char *result)
781{
782 const int index = float_to_shortest_decimal_bufn(f, result);
783
784 /* Terminate the string. */
786 result[index] = '\0';
787 return index;
788}
789
790/*
791 * Return the shortest decimal representation as a null-terminated palloc'd
792 * string (outside the backend, uses malloc() instead).
793 *
794 * Caller is responsible for freeing the result.
795 */
796char *
798{
799 char *const result = (char *) palloc(FLOAT_SHORTEST_DECIMAL_LEN);
800
802 return result;
803}
uint8_t uint8
Definition: c.h:500
#define PG_UINT32_MAX
Definition: c.h:561
int32_t int32
Definition: c.h:498
uint64_t uint64
Definition: c.h:503
uint32_t uint32
Definition: c.h:502
#define UINT64CONST(x)
Definition: c.h:517
static int to_chars(const floating_decimal_32 v, const bool sign, char *const result)
Definition: f2s.c:563
#define FLOAT_POW5_INV_BITCOUNT
Definition: f2s.c:53
static const uint64 FLOAT_POW5_SPLIT[47]
Definition: f2s.c:65
static bool multipleOfPowerOf2(const uint32 value, const uint32 p)
Definition: f2s.c:109
int float_to_shortest_decimal_buf(float f, char *result)
Definition: f2s.c:780
int float_to_shortest_decimal_bufn(float f, char *result)
Definition: f2s.c:742
static uint32 pow5Factor(uint32 value)
Definition: f2s.c:81
static uint32 decimalLength(const uint32 v)
Definition: f2s.c:174
#define FLOAT_MANTISSA_BITS
Definition: f2s.c:45
#define FLOAT_POW5_BITCOUNT
Definition: f2s.c:64
#define FLOAT_BIAS
Definition: f2s.c:47
static bool f2d_small_int(const uint32 ieeeMantissa, const uint32 ieeeExponent, floating_decimal_32 *v)
Definition: f2s.c:689
static uint32 mulPow5InvDivPow2(const uint32 m, const uint32 q, const int32 j)
Definition: f2s.c:162
static uint32 mulPow5divPow2(const uint32 m, const uint32 i, const int32 j)
Definition: f2s.c:168
static bool multipleOfPowerOf5(const uint32 value, const uint32 p)
Definition: f2s.c:102
static floating_decimal_32 f2d(const uint32 ieeeMantissa, const uint32 ieeeExponent)
Definition: f2s.c:222
static const uint64 FLOAT_POW5_INV_SPLIT[31]
Definition: f2s.c:54
static int to_chars_f(const floating_decimal_32 v, const uint32 olength, char *const result)
Definition: f2s.c:440
#define FLOAT_EXPONENT_BITS
Definition: f2s.c:46
char * float_to_shortest_decimal(float f)
Definition: f2s.c:797
struct floating_decimal_32 floating_decimal_32
static uint32 mulShift(const uint32 m, const uint64 factor, const int32 shift)
Definition: f2s.c:120
Assert(PointerIsAligned(start, uint64))
FILE * output
static struct @165 value
char sign
Definition: informix.c:693
int j
Definition: isn.c:78
int i
Definition: isn.c:77
void * palloc(Size size)
Definition: mcxt.c:1945
static const char DIGIT_TABLE[200]
Definition: numutils.c:29
char * c
static int fd(const char *x, int i)
Definition: preproc-init.c:105
static uint32 float_to_bits(const float f)
Definition: ryu_common.h:116
static uint32 pow5bits(const int32 e)
Definition: ryu_common.h:54
static int32 log10Pow5(const int32 e)
Definition: ryu_common.h:83
static int copy_special_str(char *const result, const bool sign, const bool exponent, const bool mantissa)
Definition: ryu_common.h:95
static int32 log10Pow2(const int32 e)
Definition: ryu_common.h:70
#define FLOAT_SHORTEST_DECIMAL_LEN
Definition: shortest_dec.h:57
uint32 mantissa
Definition: f2s.c:217
int32 exponent
Definition: f2s.c:218
Definition: type.h:96