summaryrefslogtreecommitdiff
path: root/doc/src/sgml/geqo.sgml
diff options
context:
space:
mode:
authorTom Lane2005-01-05 23:42:03 +0000
committerTom Lane2005-01-05 23:42:03 +0000
commit81c41e3d0ed3c63b02412a6aab824e5ce79780c2 (patch)
treed167e3e64f123b48331cee6dab5962bc6f01a7c9 /doc/src/sgml/geqo.sgml
parentb4b984bccf78f96605b573435b35ae9d3c60bd85 (diff)
More minor updates and copy-editing.
Diffstat (limited to 'doc/src/sgml/geqo.sgml')
-rw-r--r--doc/src/sgml/geqo.sgml40
1 files changed, 25 insertions, 15 deletions
diff --git a/doc/src/sgml/geqo.sgml b/doc/src/sgml/geqo.sgml
index cbf4da6ec7a..5822199860d 100644
--- a/doc/src/sgml/geqo.sgml
+++ b/doc/src/sgml/geqo.sgml
@@ -1,5 +1,5 @@
<!--
-$PostgreSQL: pgsql/doc/src/sgml/geqo.sgml,v 1.26 2003/11/29 19:51:37 pgsql Exp $
+$PostgreSQL: pgsql/doc/src/sgml/geqo.sgml,v 1.27 2005/01/05 23:42:03 tgl Exp $
Genetic Optimizer
-->
@@ -65,8 +65,7 @@ Genetic Optimizer
enormous amount of time and memory space when the number of joins
in the query grows large. This makes the ordinary
<productname>PostgreSQL</productname> query optimizer
- inappropriate for database application domains that involve the
- need for extensive queries, such as artificial intelligence.
+ inappropriate for queries that join a large number of tables.
</para>
<para>
@@ -97,7 +96,7 @@ Genetic Optimizer
<para>
The genetic algorithm (<acronym>GA</acronym>) is a heuristic optimization method which
operates through
- determined, randomized search. The set of possible solutions for the
+ nondeterministic, randomized search. The set of possible solutions for the
optimization problem is considered as a
<firstterm>population</firstterm> of <firstterm>individuals</firstterm>.
The degree of adaptation of an individual to its environment is specified
@@ -176,11 +175,12 @@ Genetic Optimizer
<title>Genetic Query Optimization (<acronym>GEQO</acronym>) in PostgreSQL</title>
<para>
- The <acronym>GEQO</acronym> module is intended for the solution of the query
- optimization problem similar to a traveling salesman problem (<acronym>TSP</acronym>).
+ The <acronym>GEQO</acronym> module approaches the query
+ optimization problem as though it were the well-known traveling salesman
+ problem (<acronym>TSP</acronym>).
Possible query plans are encoded as integer strings. Each string
represents the join order from one relation of the query to the next.
- E. g., the query tree
+ For example, the join tree
<literallayout class="monospaced">
/\
/\ 2
@@ -245,29 +245,39 @@ Genetic Optimizer
<para>
Work is still needed to improve the genetic algorithm parameter
settings.
- In file <filename>backend/optimizer/geqo/geqo_params.c</filename>, routines
+ In file <filename>src/backend/optimizer/geqo/geqo_main.c</filename>,
+ routines
<function>gimme_pool_size</function> and <function>gimme_number_generations</function>,
we have to find a compromise for the parameter settings
to satisfy two competing demands:
<itemizedlist spacing="compact">
<listitem>
- <para>
- Optimality of the query plan
- </para>
+ <para>
+ Optimality of the query plan
+ </para>
</listitem>
<listitem>
- <para>
- Computing time
- </para>
+ <para>
+ Computing time
+ </para>
</listitem>
</itemizedlist>
</para>
+ <para>
+ At a more basic level, it is not clear that solving query optimization
+ with a GA algorithm designed for TSP is appropriate. In the TSP case,
+ the cost associated with any substring (partial tour) is independent
+ of the rest of the tour, but this is certainly not true for query
+ optimization. Thus it is questionable whether edge recombination
+ crossover is the most effective mutation procedure.
+ </para>
+
</sect2>
</sect1>
<sect1 id="geqo-biblio">
- <title>Further Readings</title>
+ <title>Further Reading</title>
<para>
The following resources contain additional information about