summaryrefslogtreecommitdiff
path: root/src/test/regress/expected/partition_aggregate.out
diff options
context:
space:
mode:
authorTomas Vondra2022-03-30 22:09:11 +0000
committerTomas Vondra2022-03-30 23:13:33 +0000
commitdb0d67db2401eb6238ccc04c6407a4fd4f985832 (patch)
treea1956b9a26f48b06e4c3a07d860645b0b6e12eb8 /src/test/regress/expected/partition_aggregate.out
parent606948b058dc16bce494270eea577011a602810e (diff)
Optimize order of GROUP BY keys
When evaluating a query with a multi-column GROUP BY clause using sort, the cost may be heavily dependent on the order in which the keys are compared when building the groups. Grouping does not imply any ordering, so we're allowed to compare the keys in arbitrary order, and a Hash Agg leverages this. But for Group Agg, we simply compared keys in the order as specified in the query. This commit explores alternative ordering of the keys, trying to find a cheaper one. In principle, we might generate grouping paths for all permutations of the keys, and leave the rest to the optimizer. But that might get very expensive, so we try to pick only a couple interesting orderings based on both local and global information. When planning the grouping path, we explore statistics (number of distinct values, cost of the comparison function) for the keys and reorder them to minimize comparison costs. Intuitively, it may be better to perform more expensive comparisons (for complex data types etc.) last, because maybe the cheaper comparisons will be enough. Similarly, the higher the cardinality of a key, the lower the probability we’ll need to compare more keys. The patch generates and costs various orderings, picking the cheapest ones. The ordering of group keys may interact with other parts of the query, some of which may not be known while planning the grouping. E.g. there may be an explicit ORDER BY clause, or some other ordering-dependent operation, higher up in the query, and using the same ordering may allow using either incremental sort or even eliminate the sort entirely. The patch generates orderings and picks those minimizing the comparison cost (for various pathkeys), and then adds orderings that might be useful for operations higher up in the plan (ORDER BY, etc.). Finally, it always keeps the ordering specified in the query, on the assumption the user might have additional insights. This introduces a new GUC enable_group_by_reordering, so that the optimization may be disabled if needed. The original patch was proposed by Teodor Sigaev, and later improved and reworked by Dmitry Dolgov. Reviews by a number of people, including me, Andrey Lepikhov, Claudio Freire, Ibrar Ahmed and Zhihong Yu. Author: Dmitry Dolgov, Teodor Sigaev, Tomas Vondra Reviewed-by: Tomas Vondra, Andrey Lepikhov, Claudio Freire, Ibrar Ahmed, Zhihong Yu Discussion: https://postgr.es/m/7c79e6a5-8597-74e8-0671-1c39d124c9d6%40sigaev.ru Discussion: https://postgr.es/m/CA%2Bq6zcW_4o2NC0zutLkOJPsFt80megSpX_dVRo6GK9PC-Jx_Ag%40mail.gmail.com
Diffstat (limited to 'src/test/regress/expected/partition_aggregate.out')
-rw-r--r--src/test/regress/expected/partition_aggregate.out136
1 files changed, 65 insertions, 71 deletions
diff --git a/src/test/regress/expected/partition_aggregate.out b/src/test/regress/expected/partition_aggregate.out
index dfa4b036b52..a08a3825ff6 100644
--- a/src/test/regress/expected/partition_aggregate.out
+++ b/src/test/regress/expected/partition_aggregate.out
@@ -952,32 +952,30 @@ SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HA
--------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_ml.a, (sum(pagg_tab_ml.b)), (array_agg(DISTINCT pagg_tab_ml.c))
- -> Gather
- Workers Planned: 2
- -> Parallel Append
- -> GroupAggregate
- Group Key: pagg_tab_ml.a
- Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml.a
- -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
- -> GroupAggregate
- Group Key: pagg_tab_ml_5.a
- Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml_5.a
- -> Append
- -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
- -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
- -> GroupAggregate
- Group Key: pagg_tab_ml_2.a
- Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml_2.a
- -> Append
- -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
- -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
-(27 rows)
+ -> Append
+ -> GroupAggregate
+ Group Key: pagg_tab_ml.a
+ Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml.a
+ -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_2.a
+ Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_2.a
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
+ -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_5.a
+ Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_5.a
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
+ -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
+(25 rows)
SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3 ORDER BY 1, 2, 3;
a | sum | array_agg | count
@@ -996,34 +994,32 @@ SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HA
-- Without ORDER BY clause, to test Gather at top-most path
EXPLAIN (COSTS OFF)
SELECT a, sum(b), array_agg(distinct c), count(*) FROM pagg_tab_ml GROUP BY a HAVING avg(b) < 3;
- QUERY PLAN
----------------------------------------------------------------------------
- Gather
- Workers Planned: 2
- -> Parallel Append
- -> GroupAggregate
- Group Key: pagg_tab_ml.a
- Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml.a
- -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
- -> GroupAggregate
- Group Key: pagg_tab_ml_5.a
- Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml_5.a
- -> Append
- -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
- -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
- -> GroupAggregate
- Group Key: pagg_tab_ml_2.a
- Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
- -> Sort
- Sort Key: pagg_tab_ml_2.a
- -> Append
- -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
- -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
-(25 rows)
+ QUERY PLAN
+---------------------------------------------------------------------
+ Append
+ -> GroupAggregate
+ Group Key: pagg_tab_ml.a
+ Filter: (avg(pagg_tab_ml.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml.a
+ -> Seq Scan on pagg_tab_ml_p1 pagg_tab_ml
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_2.a
+ Filter: (avg(pagg_tab_ml_2.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_2.a
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p2_s1 pagg_tab_ml_2
+ -> Seq Scan on pagg_tab_ml_p2_s2 pagg_tab_ml_3
+ -> GroupAggregate
+ Group Key: pagg_tab_ml_5.a
+ Filter: (avg(pagg_tab_ml_5.b) < '3'::numeric)
+ -> Sort
+ Sort Key: pagg_tab_ml_5.a
+ -> Append
+ -> Seq Scan on pagg_tab_ml_p3_s1 pagg_tab_ml_5
+ -> Seq Scan on pagg_tab_ml_p3_s2 pagg_tab_ml_6
+(23 rows)
-- Full aggregation at level 1 as GROUP BY clause matches with PARTITION KEY
-- for level 1 only. For subpartitions, GROUP BY clause does not match with
@@ -1379,28 +1375,26 @@ SELECT x, sum(y), avg(y), count(*) FROM pagg_tab_para GROUP BY x HAVING avg(y) <
-- When GROUP BY clause does not match; partial aggregation is performed for each partition.
EXPLAIN (COSTS OFF)
SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
- QUERY PLAN
--------------------------------------------------------------------------------------------
+ QUERY PLAN
+-------------------------------------------------------------------------------------
Sort
Sort Key: pagg_tab_para.y, (sum(pagg_tab_para.x)), (avg(pagg_tab_para.x))
- -> Finalize GroupAggregate
+ -> Finalize HashAggregate
Group Key: pagg_tab_para.y
Filter: (avg(pagg_tab_para.x) < '12'::numeric)
- -> Gather Merge
+ -> Gather
Workers Planned: 2
- -> Sort
- Sort Key: pagg_tab_para.y
- -> Parallel Append
- -> Partial HashAggregate
- Group Key: pagg_tab_para.y
- -> Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
- -> Partial HashAggregate
- Group Key: pagg_tab_para_1.y
- -> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
- -> Partial HashAggregate
- Group Key: pagg_tab_para_2.y
- -> Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
-(19 rows)
+ -> Parallel Append
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para.y
+ -> Parallel Seq Scan on pagg_tab_para_p1 pagg_tab_para
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para_1.y
+ -> Parallel Seq Scan on pagg_tab_para_p2 pagg_tab_para_1
+ -> Partial HashAggregate
+ Group Key: pagg_tab_para_2.y
+ -> Parallel Seq Scan on pagg_tab_para_p3 pagg_tab_para_2
+(17 rows)
SELECT y, sum(x), avg(x), count(*) FROM pagg_tab_para GROUP BY y HAVING avg(x) < 12 ORDER BY 1, 2, 3;
y | sum | avg | count