Age | Commit message (Collapse) | Author |
|
plpython.h included plpy_util.h, simply on the grounds that "it's
easier to just include it everywhere". However, plpy_util.h must
include plpython.h, or it won't pass headerscheck. While the
resulting circularity doesn't have any immediate bad effect,
it's poor design. We have seen serious messes arise in the past
from overly-broad inclusion footprints created by such circularities,
so let's establish a project policy against it.
To fix, just replace *.c files' inclusions of plpython.h with
plpy_util.h. They'll pull in plpython.h indirectly; indeed, almost
all have already done so via inclusions of other plpy_xxx.h headers.
(Any extensions using plpython.h can do likewise without breaking
the compatibility of their code with prior Postgres versions.)
Reported-by: Bertrand Drouvot <[email protected]>
Author: Tom Lane <[email protected]>
Reviewed-by: Bertrand Drouvot <[email protected]>
Discussion: https://postgr.es/m/[email protected]
|
|
It seems potentially useful to label our shared libraries with version
information, now that a facility exists for retrieving that. This
patch labels them with the PG_VERSION string. There was some
discussion about using semantic versioning conventions, but that
doesn't seem terribly helpful for modules with no SQL-level presence;
and for those that do have SQL objects, we typically expect them
to support multiple revisions of the SQL definitions, so it'd still
not be very helpful.
I did not label any of src/test/modules/. It seems unnecessary since
we don't install those, and besides there ought to be someplace that
still provides test coverage for the original PG_MODULE_MAGIC macro.
Author: Tom Lane <[email protected]>
Discussion: https://postgr.es/m/[email protected]
|
|
SPI_connect/SPI_connect_ext have not returned any value other than
SPI_OK_CONNECT since commit 1833f1a1c in v10; any errors are thrown
via ereport. (The most likely failure is out-of-memory, which has
always been thrown that way, so callers had better be prepared for
such errors.) This makes it somewhat pointless to check these
functions' result, and some callers within our code haven't been
bothering; indeed, the only usage example within spi.sgml doesn't
bother. So it's likely that the omission has propagated into
extensions too.
Hence, let's standardize on not checking, and document the return
value as historical, while not actually changing these functions'
behavior. (The original proposal was to change their return type
to "void", but that would needlessly break extensions that are
conforming to the old practice.) This saves a small amount of
boilerplate code in a lot of places.
Stepan Neretin
Discussion: https://postgr.es/m/CAMaYL5Z9Uk8cD9qGz9QaZ2UBJFOu7jFx5Mwbznz-1tBbPDQZow@mail.gmail.com
|
|
Author: Alexander Lakhin
Discussion: https://postgr.es/m/[email protected]
|
|
The prior commit declared them centrally.
Author: Andres Freund <[email protected]>
Reviewed-By: Tom Lane <[email protected]>
Discussion: https://postgr.es/m/[email protected]
|
|
Since 19252e8ec93 we reject Python 2 during build configuration. Now that the
dust on the buildfarm has settled, remove Python 2 specific code, including
the "Python 2/3 porting layer".
The code to detect conflicts between plpython using Python 2 and 3 is not
removed, in case somebody creates an out-of-tree version adding back support
for Python 2.
Reviewed-By: Peter Eisentraut <[email protected]>
Reviewed-By: Tom Lane <[email protected]>
Discussion: https://postgr.es/m/[email protected]
|
|
A long time ago, it was necessary to declare datatype I/O functions,
triggers, and language handler support functions in a very type-unsafe
way involving a single pseudo-type "opaque". We got rid of those
conventions in 7.3, but there was still support in various places to
automatically convert such functions to the modern declaration style,
to be able to transparently re-load dumps from pre-7.3 servers.
It seems unnecessary to continue to support that anymore, so take out
the hacks; whereupon the "opaque" pseudo-type itself is no longer
needed and can be dropped.
This is part of a group of patches removing various server-side kluges
for transparently upgrading pre-8.0 dump files. Since we've had few
complaints about dropping pg_dump's support for dumping from pre-8.0
servers (commit 64f3524e2), it seems okay to now remove these kluges.
Discussion: https://postgr.es/m/[email protected]
|
|
This patch creates a new extension property, "trusted". An extension
that's marked that way in its control file can be installed by a
non-superuser who has the CREATE privilege on the current database,
even if the extension contains objects that normally would have to be
created by a superuser. The objects within the extension will (by
default) be owned by the bootstrap superuser, but the extension itself
will be owned by the calling user. This allows replicating the old
behavior around trusted procedural languages, without all the
special-case logic in CREATE LANGUAGE. We have, however, chosen to
loosen the rules slightly: formerly, only a database owner could take
advantage of the special case that allowed installation of a trusted
language, but now anyone who has CREATE privilege can do so.
Having done that, we can delete the pg_pltemplate catalog, moving the
knowledge it contained into the extension script files for the various
PLs. This ends up being no change at all for the in-core PLs, but it is
a large step forward for external PLs: they can now have the same ease
of installation as core PLs do. The old "trusted PL" behavior was only
available to PLs that had entries in pg_pltemplate, but now any
extension can be marked trusted if appropriate.
This also removes one of the stumbling blocks for our Python 2 -> 3
migration, since the association of "plpythonu" with Python 2 is no
longer hard-wired into pg_pltemplate's initial contents. Exactly where
we go from here on that front remains to be settled, but one problem
is fixed.
Patch by me, reviewed by Peter Eisentraut, Stephen Frost, and others.
Discussion: https://postgr.es/m/[email protected]
|
|
Similar to commits 14aec03502, 7e735035f2 and dddf4cdc33, this commit
makes the order of header file inclusion consistent in more places.
Author: Vignesh C
Reviewed-by: Amit Kapila
Discussion: https://postgr.es/m/CALDaNm2Sznv8RR6Ex-iJO6xAdsxgWhCoETkaYX=+9DW3q0QCfA@mail.gmail.com
|
|
Before this change FunctionCallInfoData, the struct arguments etc for
V1 function calls are stored in, always had space for
FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two
arrays. For nearly every function call 100 arguments is far more than
needed, therefore wasting memory. Arg and argnull being two separate
arrays also guarantees that to access a single argument, two
cachelines have to be touched.
Change the layout so there's a single variable-length array with pairs
of value / isnull. That drastically reduces memory consumption for
most function calls (on x86-64 a two argument function now uses
64bytes, previously 936 bytes), and makes it very likely that argument
value and its nullness are on the same cacheline.
Arguments are stored in a new NullableDatum struct, which, due to
padding, needs more memory per argument than before. But as usually
far fewer arguments are stored, and individual arguments are cheaper
to access, that's still a clear win. It's likely that there's other
places where conversion to NullableDatum arrays would make sense,
e.g. TupleTableSlots, but that's for another commit.
Because the function call information is now variable-length
allocations have to take the number of arguments into account. For
heap allocations that can be done with SizeForFunctionCallInfoData(),
for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro
that helps to allocate an appropriately sized and aligned variable.
Some places with stack allocation function call information don't know
the number of arguments at compile time, and currently variably sized
stack allocations aren't allowed in postgres. Therefore allow for
FUNC_MAX_ARGS space in these cases. They're not that common, so for
now that seems acceptable.
Because of the need to allocate FunctionCallInfo of the appropriate
size, older extensions may need to update their code. To avoid subtle
breakages, the FunctionCallInfoData struct has been renamed to
FunctionCallInfoBaseData. Most code only references FunctionCallInfo,
so that shouldn't cause much collateral damage.
This change is also a prerequisite for more efficient expression JIT
compilation (by allocating the function call information on the stack,
allowing LLVM to optimize it away); previously the size of the call
information caused problems inside LLVM's optimizer.
Author: Andres Freund
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/[email protected]
|
|
plpython_error_callback() reported the name of the function associated
with the topmost PL/Python execution context. This was not merely
wrong if there were nested PL/Python contexts, but it risked a core
dump if the topmost one is an inline code block rather than a named
function. That will have proname = NULL, and so we were passing a NULL
pointer to snprintf("%s"). It seems that none of the PL/Python-testing
machines in the buildfarm will dump core for that, but some platforms do,
as reported by Marina Polyakova.
Investigation finds that there actually is an existing regression test
that used to prove that the behavior was wrong, though apparently no one
had noticed that it was printing the wrong function name. It stopped
showing the problem in 9.6 when we adjusted psql to not print CONTEXT
by default for NOTICE messages. The problem is masked (if your platform
avoids the core dump) in error cases, because PL/Python will throw away
the originally generated error info in favor of a new traceback produced
at the outer level.
Repair by using ErrorContextCallback.arg to pass the correct context to
the error callback. Add a regression test illustrating correct behavior.
Back-patch to all supported branches, since they're all broken this way.
Discussion: https://postgr.es/m/[email protected]
|
|
In each of the supplied procedural languages (PL/pgSQL, PL/Perl,
PL/Python, PL/Tcl), add language-specific commit and rollback
functions/commands to control transactions in procedures in that
language. Add similar underlying functions to SPI. Some additional
cleanup so that transaction commit or abort doesn't blow away data
structures still used by the procedure call. Add execution context
tracking to CALL and DO statements so that transaction control commands
can only be issued in top-level procedure and block calls, not function
calls or other procedure or block calls.
- SPI
Add a new function SPI_connect_ext() that is like SPI_connect() but
allows passing option flags. The only option flag right now is
SPI_OPT_NONATOMIC. A nonatomic SPI connection can execute transaction
control commands, otherwise it's not allowed. This is meant to be
passed down from CALL and DO statements which themselves know in which
context they are called. A nonatomic SPI connection uses different
memory management. A normal SPI connection allocates its memory in
TopTransactionContext. For nonatomic connections we use PortalContext
instead. As the comment in SPI_connect_ext() (previously SPI_connect())
indicates, one could potentially use PortalContext in all cases, but it
seems safest to leave the existing uses alone, because this stuff is
complicated enough already.
SPI also gets new functions SPI_start_transaction(), SPI_commit(), and
SPI_rollback(), which can be used by PLs to implement their transaction
control logic.
- portalmem.c
Some adjustments were made in the code that cleans up portals at
transaction abort. The portal code could already handle a command
*committing* a transaction and continuing (e.g., VACUUM), but it was not
quite prepared for a command *aborting* a transaction and continuing.
In AtAbort_Portals(), remove the code that marks an active portal as
failed. As the comment there already predicted, this doesn't work if
the running command wants to keep running after transaction abort. And
it's actually not necessary, because pquery.c is careful to run all
portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if
there is an exception. So the code in AtAbort_Portals() is never used
anyway.
In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not
to clean up active portals too much. This mirrors similar code in
PreCommit_Portals().
- PL/Perl
Gets new functions spi_commit() and spi_rollback()
- PL/pgSQL
Gets new commands COMMIT and ROLLBACK.
Update the PL/SQL porting example in the documentation to reflect that
transactions are now possible in procedures.
- PL/Python
Gets new functions plpy.commit and plpy.rollback.
- PL/Tcl
Gets new commands commit and rollback.
Reviewed-by: Andrew Dunstan <[email protected]>
|
|
This adds a new object type "procedure" that is similar to a function
but does not have a return type and is invoked by the new CALL statement
instead of SELECT or similar. This implementation is aligned with the
SQL standard and compatible with or similar to other SQL implementations.
This commit adds new commands CALL, CREATE/ALTER/DROP PROCEDURE, as well
as ALTER/DROP ROUTINE that can refer to either a function or a
procedure (or an aggregate function, as an extension to SQL). There is
also support for procedures in various utility commands such as COMMENT
and GRANT, as well as support in pg_dump and psql. Support for defining
procedures is available in all the languages supplied by the core
distribution.
While this commit is mainly syntax sugar around existing functionality,
future features will rely on having procedures as a separate object
type.
Reviewed-by: Andrew Dunstan <[email protected]>
|
|
Python Py*_New() functions can fail and return NULL in out-of-memory
conditions. The previous code handled that inconsistently or not at
all. This change organizes that better. If we are in a function that
is called from Python, we just check for failure and return NULL
ourselves, which will cause any exception information to be passed up.
If we are called from PostgreSQL, we consistently create an "out of
memory" error.
Reviewed-by: Tom Lane <[email protected]>
|
|
Fix PL/Python so that it can handle domains over composite, and so that
it enforces domain constraints correctly in other cases that were not
always done properly before. Notably, it didn't do arrays of domains
right (oversight in commit c12d570fa), and it failed to enforce domain
constraints when returning a composite type containing a domain field,
and if a transform function is being used for a domain's base type then
it failed to enforce domain constraints on the result. Also, in many
places it missed checking domain constraints on null values, because
the plpy_typeio code simply wasn't called for Py_None.
Rather than try to band-aid these problems, I made a significant
refactoring of the plpy_typeio logic. The existing design of recursing
for array and composite members is extended to also treat domains as
containers requiring recursion, and the APIs for the module are cleaned
up and simplified.
The patch also modifies plpy_typeio to rely on the typcache more than
it did before (which was pretty much not at all). This reduces the
need for repetitive lookups, and lets us get rid of an ad-hoc scheme
for detecting changes in composite types. I added a couple of small
features to typcache to help with that.
Although some of this is fixing bugs that long predate v11, I don't
think we should risk a back-patch: it's a significant amount of code
churn, and there've been no complaints from the field about the bugs.
Tom Lane, reviewed by Anthony Bykov
Discussion: https://postgr.es/m/[email protected]
|
|
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/[email protected]
Discussion: https://postgr.es/m/[email protected]
|
|
I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls
had typos in the context-sizing parameters. While none of these led to
especially significant problems, they did create minor inefficiencies,
and it's now clear that expecting people to copy-and-paste those calls
accurately is not a great idea. Let's reduce the risk of future errors
by introducing single macros that encapsulate the common use-cases.
Three such macros are enough to cover all but two special-purpose contexts;
those two calls can be left as-is, I think.
While this patch doesn't in itself improve matters for third-party
extensions, it doesn't break anything for them either, and they can
gradually adopt the simplified notation over time.
In passing, change TopMemoryContext to use the default allocation
parameters. Formerly it could only be extended 8K at a time. That was
probably reasonable when this code was written; but nowadays we create
many more contexts than we did then, so that it's not unusual to have a
couple hundred K in TopMemoryContext, even without considering various
dubious code that sticks other things there. There seems no good reason
not to let it use growing blocks like most other contexts.
Back-patch to 9.6, mostly because that's still close enough to HEAD that
it's easy to do so, and keeping the branches in sync can be expected to
avoid some future back-patching pain. The bugs fixed by these changes
don't seem to be significant enough to justify fixing them further back.
Discussion: <[email protected]>
|
|
Commit 866566a690bb9916 introduced a new mechanism for incompatible
plpythons to detect each other. I left the old mechanism in place,
because it seems possible that a plpython predating that commit might be
used with one postdating it. (This would require updating plpython3 but
not plpython2 or vice versa, but that seems well within the realm of
possibility.) However, surely it will not be able to happen in 9.6 or
later, so we can delete the old mechanism in HEAD.
|
|
Commit 803716013dc1350f installed a safeguard against loading plpython2
and plpython3 at the same time, but asserted that both could still be
used in the same database, just not in the same session. However, that's
not actually all that practical because dumping and reloading will fail
(since both libraries necessarily get loaded into the restoring session).
pg_upgrade is even worse, because it checks for missing libraries by
loading every .so library mentioned in the entire installation into one
session, so that you can have only one across the whole cluster.
We can improve matters by not throwing the error immediately in _PG_init,
but only when and if we're asked to do something that requires calling
into libpython. This ameliorates both of the above situations, since
while execution of CREATE LANGUAGE, CREATE FUNCTION, etc will result in
loading plpython, it isn't asked to do anything interesting (at least
not if check_function_bodies is off, as it will be during a restore).
It's possible that this opens some corner-case holes in which a crash
could be provoked with sufficient effort. However, since plpython
only exists as an untrusted language, any such crash would require
superuser privileges, making it "don't do that" not a security issue.
To reduce the hazards in this area, the error is still FATAL when it
does get thrown.
Per a report from Paul Jones. Back-patch to 9.2, which is as far back
as the patch applies without work. (It could be made to work in 9.1,
but given the lack of previous complaints, I'm disinclined to expend
effort so far back. We've been pretty desultory about support for
Python 3 in 9.1 anyway.)
|
|
Previously, plpython was in the habit of allocating a lot of stuff in
TopMemoryContext, and it was very slipshod about making sure that stuff
got cleaned up; in particular, use of TopMemoryContext as fn_mcxt for
function calls represents an unfixable leak, since we generally don't
know what the called function might have allocated in fn_mcxt. This
results in session-lifespan leakage in certain usage scenarios, as for
example in a case reported by Ed Behn back in July.
To fix, get rid of all the retail allocations in TopMemoryContext.
All long-lived allocations are now made in sub-contexts that are
associated with specific objects (either pl/python procedures, or
Python-visible objects such as cursors and plans). We can clean these
up when the associated object is deleted.
I went so far as to get rid of PLy_malloc completely. There were a
couple of places where it could still have been used safely, but on
the whole it was just an invitation to bad coding.
Haribabu Kommi, based on a draft patch by Heikki Linnakangas;
some further work by me
|
|
This provides a mechanism for specifying conversions between SQL data
types and procedural languages. As examples, there are transforms
for hstore and ltree for PL/Perl and PL/Python.
reviews by Pavel Stěhule and Andres Freund
|
|
Per testing with a compiler that whines about this.
|
|
Because of gcc -Wmissing-prototypes, all functions in dynamically
loadable modules must have a separate prototype declaration. This is
meant to detect global functions that are not declared in header files,
but in cases where the function is called via dfmgr, this is redundant.
Besides filling up space with boilerplate, this is a frequent source of
compiler warnings in extension modules.
We can fix that by creating the function prototype as part of the
PG_FUNCTION_INFO_V1 macro, which such modules have to use anyway. That
makes the code of modules cleaner, because there is one less place where
the entry points have to be listed, and creates an additional check that
functions have the right prototype.
Remove now redundant prototypes from contrib and other modules.
|
|
The primary role of PL validators is to be called implicitly during
CREATE FUNCTION, but they are also normal functions that a user can call
explicitly. Add a permissions check to each validator to ensure that a
user cannot use explicit validator calls to achieve things he could not
otherwise achieve. Back-patch to 8.4 (all supported versions).
Non-core procedural language extensions ought to make the same two-line
change to their own validators.
Andres Freund, reviewed by Tom Lane and Noah Misch.
Security: CVE-2014-0061
|
|
plpython tried to use a single cache entry for a trigger function, but it
needs a separate cache entry for each table the trigger is applied to,
because there is table-dependent data in there. This was done correctly
before 9.1, but commit 46211da1b84bc3537e799ee1126098e71c2428e8 broke it
by simplifying the lookup key from "function OID and triggered table OID"
to "function OID and is-trigger boolean". Go back to using both OIDs
as the lookup key. Per bug report from Sandro Santilli.
Andres Freund
|
|
This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.
I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h. In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
|
|
commit-fest.
|
|
Dave Malcolm of Red Hat is working on a static code analysis tool for
Python-related C code. It reported a number of problems in plpython,
most of which were failures to check for NULL results from object-creation
functions, so would only be an issue in very-low-memory situations.
Patch in HEAD and 9.1. We could go further back but it's not clear that
these issues are important enough to justify the work.
Jan Urbański
|
|
This replaces the former global variable PLy_curr_procedure, and provides
a place to stash per-call-level information. In particular we create a
per-call-level scratch memory context.
For the moment, the scratch context is just used to avoid leaking memory
from datatype output function calls in PLyDict_FromTuple. There probably
will be more use-cases in future.
Although this is a fix for a pre-existing memory leakage bug, it seems
sufficiently invasive to not want to back-patch; it feels better as part
of the major rearrangement of plpython code that we've already done as
part of 9.2.
Jan Urbański
|
|
For easier source reading
|
|
This moves the code around from one huge file into hopefully logical
and more manageable modules. For the most part, the code itself was
not touched, except: PLy_function_handler and PLy_trigger_handler were
renamed to PLy_exec_function and PLy_exec_trigger, because they were
not actually handlers in the PL handler sense, and it makes the naming
more similar to the way PL/pgSQL is organized. The initialization of
the procedure caches was separated into a new function
init_procedure_caches to keep the hash tables private to
plpy_procedures.c.
Jan Urbański and Peter Eisentraut
|