1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
|
# frozen_string_literal: true
require "delegate"
require "ripper"
module Prism
# This class is responsible for lexing the source using prism and then
# converting those tokens to be compatible with Ripper. In the vast majority
# of cases, this is a one-to-one mapping of the token type. Everything else
# generally lines up. However, there are a few cases that require special
# handling.
class LexCompat # :nodoc:
# A result class specialized for holding tokens produced by the lexer.
class Result < Prism::Result
# The list of tokens that were produced by the lexer.
attr_reader :value
# Create a new lex compat result object with the given values.
def initialize(value, comments, magic_comments, data_loc, errors, warnings, source)
@value = value
super(comments, magic_comments, data_loc, errors, warnings, source)
end
# Implement the hash pattern matching interface for Result.
def deconstruct_keys(keys)
super.merge!(value: value)
end
end
# This is a mapping of prism token types to Ripper token types. This is a
# many-to-one mapping because we split up our token types, whereas Ripper
# tends to group them.
RIPPER = {
AMPERSAND: :on_op,
AMPERSAND_AMPERSAND: :on_op,
AMPERSAND_AMPERSAND_EQUAL: :on_op,
AMPERSAND_DOT: :on_op,
AMPERSAND_EQUAL: :on_op,
BACK_REFERENCE: :on_backref,
BACKTICK: :on_backtick,
BANG: :on_op,
BANG_EQUAL: :on_op,
BANG_TILDE: :on_op,
BRACE_LEFT: :on_lbrace,
BRACE_RIGHT: :on_rbrace,
BRACKET_LEFT: :on_lbracket,
BRACKET_LEFT_ARRAY: :on_lbracket,
BRACKET_LEFT_RIGHT: :on_op,
BRACKET_LEFT_RIGHT_EQUAL: :on_op,
BRACKET_RIGHT: :on_rbracket,
CARET: :on_op,
CARET_EQUAL: :on_op,
CHARACTER_LITERAL: :on_CHAR,
CLASS_VARIABLE: :on_cvar,
COLON: :on_op,
COLON_COLON: :on_op,
COMMA: :on_comma,
COMMENT: :on_comment,
CONSTANT: :on_const,
DOT: :on_period,
DOT_DOT: :on_op,
DOT_DOT_DOT: :on_op,
EMBDOC_BEGIN: :on_embdoc_beg,
EMBDOC_END: :on_embdoc_end,
EMBDOC_LINE: :on_embdoc,
EMBEXPR_BEGIN: :on_embexpr_beg,
EMBEXPR_END: :on_embexpr_end,
EMBVAR: :on_embvar,
EOF: :on_eof,
EQUAL: :on_op,
EQUAL_EQUAL: :on_op,
EQUAL_EQUAL_EQUAL: :on_op,
EQUAL_GREATER: :on_op,
EQUAL_TILDE: :on_op,
FLOAT: :on_float,
FLOAT_IMAGINARY: :on_imaginary,
FLOAT_RATIONAL: :on_rational,
FLOAT_RATIONAL_IMAGINARY: :on_imaginary,
GREATER: :on_op,
GREATER_EQUAL: :on_op,
GREATER_GREATER: :on_op,
GREATER_GREATER_EQUAL: :on_op,
GLOBAL_VARIABLE: :on_gvar,
HEREDOC_END: :on_heredoc_end,
HEREDOC_START: :on_heredoc_beg,
IDENTIFIER: :on_ident,
IGNORED_NEWLINE: :on_ignored_nl,
INTEGER: :on_int,
INTEGER_IMAGINARY: :on_imaginary,
INTEGER_RATIONAL: :on_rational,
INTEGER_RATIONAL_IMAGINARY: :on_imaginary,
INSTANCE_VARIABLE: :on_ivar,
INVALID: :INVALID,
KEYWORD___ENCODING__: :on_kw,
KEYWORD___LINE__: :on_kw,
KEYWORD___FILE__: :on_kw,
KEYWORD_ALIAS: :on_kw,
KEYWORD_AND: :on_kw,
KEYWORD_BEGIN: :on_kw,
KEYWORD_BEGIN_UPCASE: :on_kw,
KEYWORD_BREAK: :on_kw,
KEYWORD_CASE: :on_kw,
KEYWORD_CLASS: :on_kw,
KEYWORD_DEF: :on_kw,
KEYWORD_DEFINED: :on_kw,
KEYWORD_DO: :on_kw,
KEYWORD_DO_LOOP: :on_kw,
KEYWORD_ELSE: :on_kw,
KEYWORD_ELSIF: :on_kw,
KEYWORD_END: :on_kw,
KEYWORD_END_UPCASE: :on_kw,
KEYWORD_ENSURE: :on_kw,
KEYWORD_FALSE: :on_kw,
KEYWORD_FOR: :on_kw,
KEYWORD_IF: :on_kw,
KEYWORD_IF_MODIFIER: :on_kw,
KEYWORD_IN: :on_kw,
KEYWORD_MODULE: :on_kw,
KEYWORD_NEXT: :on_kw,
KEYWORD_NIL: :on_kw,
KEYWORD_NOT: :on_kw,
KEYWORD_OR: :on_kw,
KEYWORD_REDO: :on_kw,
KEYWORD_RESCUE: :on_kw,
KEYWORD_RESCUE_MODIFIER: :on_kw,
KEYWORD_RETRY: :on_kw,
KEYWORD_RETURN: :on_kw,
KEYWORD_SELF: :on_kw,
KEYWORD_SUPER: :on_kw,
KEYWORD_THEN: :on_kw,
KEYWORD_TRUE: :on_kw,
KEYWORD_UNDEF: :on_kw,
KEYWORD_UNLESS: :on_kw,
KEYWORD_UNLESS_MODIFIER: :on_kw,
KEYWORD_UNTIL: :on_kw,
KEYWORD_UNTIL_MODIFIER: :on_kw,
KEYWORD_WHEN: :on_kw,
KEYWORD_WHILE: :on_kw,
KEYWORD_WHILE_MODIFIER: :on_kw,
KEYWORD_YIELD: :on_kw,
LABEL: :on_label,
LABEL_END: :on_label_end,
LAMBDA_BEGIN: :on_tlambeg,
LESS: :on_op,
LESS_EQUAL: :on_op,
LESS_EQUAL_GREATER: :on_op,
LESS_LESS: :on_op,
LESS_LESS_EQUAL: :on_op,
METHOD_NAME: :on_ident,
MINUS: :on_op,
MINUS_EQUAL: :on_op,
MINUS_GREATER: :on_tlambda,
NEWLINE: :on_nl,
NUMBERED_REFERENCE: :on_backref,
PARENTHESIS_LEFT: :on_lparen,
PARENTHESIS_LEFT_PARENTHESES: :on_lparen,
PARENTHESIS_RIGHT: :on_rparen,
PERCENT: :on_op,
PERCENT_EQUAL: :on_op,
PERCENT_LOWER_I: :on_qsymbols_beg,
PERCENT_LOWER_W: :on_qwords_beg,
PERCENT_LOWER_X: :on_backtick,
PERCENT_UPPER_I: :on_symbols_beg,
PERCENT_UPPER_W: :on_words_beg,
PIPE: :on_op,
PIPE_EQUAL: :on_op,
PIPE_PIPE: :on_op,
PIPE_PIPE_EQUAL: :on_op,
PLUS: :on_op,
PLUS_EQUAL: :on_op,
QUESTION_MARK: :on_op,
RATIONAL_FLOAT: :on_rational,
RATIONAL_INTEGER: :on_rational,
REGEXP_BEGIN: :on_regexp_beg,
REGEXP_END: :on_regexp_end,
SEMICOLON: :on_semicolon,
SLASH: :on_op,
SLASH_EQUAL: :on_op,
STAR: :on_op,
STAR_EQUAL: :on_op,
STAR_STAR: :on_op,
STAR_STAR_EQUAL: :on_op,
STRING_BEGIN: :on_tstring_beg,
STRING_CONTENT: :on_tstring_content,
STRING_END: :on_tstring_end,
SYMBOL_BEGIN: :on_symbeg,
TILDE: :on_op,
UAMPERSAND: :on_op,
UCOLON_COLON: :on_op,
UDOT_DOT: :on_op,
UDOT_DOT_DOT: :on_op,
UMINUS: :on_op,
UMINUS_NUM: :on_op,
UPLUS: :on_op,
USTAR: :on_op,
USTAR_STAR: :on_op,
WORDS_SEP: :on_words_sep,
"__END__": :on___end__
}.freeze
# When we produce tokens, we produce the same arrays that Ripper does.
# However, we add a couple of convenience methods onto them to make them a
# little easier to work with. We delegate all other methods to the array.
class Token < SimpleDelegator
# @dynamic initialize, each, []
# The location of the token in the source.
def location
self[0]
end
# The type of the token.
def event
self[1]
end
# The slice of the source that this token represents.
def value
self[2]
end
# The state of the lexer when this token was produced.
def state
self[3]
end
end
# Ripper doesn't include the rest of the token in the event, so we need to
# trim it down to just the content on the first line when comparing.
class EndContentToken < Token
def ==(other) # :nodoc:
[self[0], self[1], self[2][0..self[2].index("\n")], self[3]] == other
end
end
# Tokens where state should be ignored
# used for :on_comment, :on_heredoc_end, :on_embexpr_end
class IgnoreStateToken < Token
def ==(other) # :nodoc:
self[0...-1] == other[0...-1]
end
end
# Ident tokens for the most part are exactly the same, except sometimes we
# know an ident is a local when ripper doesn't (when they are introduced
# through named captures in regular expressions). In that case we don't
# compare the state.
class IdentToken < Token
def ==(other) # :nodoc:
(self[0...-1] == other[0...-1]) && (
(other[3] == Ripper::EXPR_LABEL | Ripper::EXPR_END) ||
(other[3] & Ripper::EXPR_ARG_ANY != 0)
)
end
end
# Ignored newlines can occasionally have a LABEL state attached to them, so
# we compare the state differently here.
class IgnoredNewlineToken < Token
def ==(other) # :nodoc:
return false unless self[0...-1] == other[0...-1]
if self[3] == Ripper::EXPR_ARG | Ripper::EXPR_LABELED
other[3] & Ripper::EXPR_ARG | Ripper::EXPR_LABELED != 0
else
self[3] == other[3]
end
end
end
# If we have an identifier that follows a method name like:
#
# def foo bar
#
# then Ripper will mark bar as END|LABEL if there is a local in a parent
# scope named bar because it hasn't pushed the local table yet. We do this
# more accurately, so we need to allow comparing against both END and
# END|LABEL.
class ParamToken < Token
def ==(other) # :nodoc:
(self[0...-1] == other[0...-1]) && (
(other[3] == Ripper::EXPR_END) ||
(other[3] == Ripper::EXPR_END | Ripper::EXPR_LABEL)
)
end
end
# A heredoc in this case is a list of tokens that belong to the body of the
# heredoc that should be appended onto the list of tokens when the heredoc
# closes.
module Heredoc # :nodoc:
# Heredocs that are no dash or tilde heredocs are just a list of tokens.
# We need to keep them around so that we can insert them in the correct
# order back into the token stream and set the state of the last token to
# the state that the heredoc was opened in.
class PlainHeredoc # :nodoc:
attr_reader :tokens
def initialize
@tokens = []
end
def <<(token)
tokens << token
end
def to_a
tokens
end
end
# Dash heredocs are a little more complicated. They are a list of tokens
# that need to be split on "\\\n" to mimic Ripper's behavior. We also need
# to keep track of the state that the heredoc was opened in.
class DashHeredoc # :nodoc:
attr_reader :split, :tokens
def initialize(split)
@split = split
@tokens = []
end
def <<(token)
tokens << token
end
def to_a
embexpr_balance = 0
tokens.each_with_object([]) do |token, results| #$ Array[Token]
case token.event
when :on_embexpr_beg
embexpr_balance += 1
results << token
when :on_embexpr_end
embexpr_balance -= 1
results << token
when :on_tstring_content
if embexpr_balance == 0
lineno = token[0][0]
column = token[0][1]
if split
# Split on "\\\n" to mimic Ripper's behavior. Use a lookbehind
# to keep the delimiter in the result.
token.value.split(/(?<=[^\\]\\\n)|(?<=[^\\]\\\r\n)/).each_with_index do |value, index|
column = 0 if index > 0
results << Token.new([[lineno, column], :on_tstring_content, value, token.state])
lineno += value.count("\n")
end
else
results << token
end
else
results << token
end
else
results << token
end
end
end
end
# Heredocs that are dedenting heredocs are a little more complicated.
# Ripper outputs on_ignored_sp tokens for the whitespace that is being
# removed from the output. prism only modifies the node itself and keeps
# the token the same. This simplifies prism, but makes comparing against
# Ripper much harder because there is a length mismatch.
#
# Fortunately, we already have to pull out the heredoc tokens in order to
# insert them into the stream in the correct order. As such, we can do
# some extra manipulation on the tokens to make them match Ripper's
# output by mirroring the dedent logic that Ripper uses.
class DedentingHeredoc # :nodoc:
TAB_WIDTH = 8
attr_reader :tokens, :dedent_next, :dedent, :embexpr_balance
def initialize
@tokens = []
@dedent_next = true
@dedent = nil
@embexpr_balance = 0
@ended_on_newline = false
end
# As tokens are coming in, we track the minimum amount of common leading
# whitespace on plain string content tokens. This allows us to later
# remove that amount of whitespace from the beginning of each line.
def <<(token)
case token.event
when :on_embexpr_beg, :on_heredoc_beg
@embexpr_balance += 1
@dedent = 0 if @dedent_next && @ended_on_newline
when :on_embexpr_end, :on_heredoc_end
@embexpr_balance -= 1
when :on_tstring_content
if embexpr_balance == 0
line = token.value
if dedent_next && !(line.strip.empty? && line.end_with?("\n"))
leading = line[/\A(\s*)\n?/, 1]
next_dedent = 0
leading.each_char do |char|
if char == "\t"
next_dedent = next_dedent - (next_dedent % TAB_WIDTH) + TAB_WIDTH
else
next_dedent += 1
end
end
@dedent = [dedent, next_dedent].compact.min
@dedent_next = true
@ended_on_newline = line.end_with?("\n")
tokens << token
return
end
end
end
@dedent_next = token.event == :on_tstring_content && embexpr_balance == 0
@ended_on_newline = false
tokens << token
end
def to_a
# If every line in the heredoc is blank, we still need to split up the
# string content token into multiple tokens.
if dedent.nil?
results = [] #: Array[Token]
embexpr_balance = 0
tokens.each do |token|
case token.event
when :on_embexpr_beg, :on_heredoc_beg
embexpr_balance += 1
results << token
when :on_embexpr_end, :on_heredoc_end
embexpr_balance -= 1
results << token
when :on_tstring_content
if embexpr_balance == 0
lineno = token[0][0]
column = token[0][1]
token.value.split(/(?<=\n)/).each_with_index do |value, index|
column = 0 if index > 0
results << Token.new([[lineno, column], :on_tstring_content, value, token.state])
lineno += 1
end
else
results << token
end
else
results << token
end
end
return results
end
# If the minimum common whitespace is 0, then we need to concatenate
# string nodes together that are immediately adjacent.
if dedent == 0
results = [] #: Array[Token]
embexpr_balance = 0
index = 0
max_index = tokens.length
while index < max_index
token = tokens[index]
results << token
index += 1
case token.event
when :on_embexpr_beg, :on_heredoc_beg
embexpr_balance += 1
when :on_embexpr_end, :on_heredoc_end
embexpr_balance -= 1
when :on_tstring_content
if embexpr_balance == 0
while index < max_index && tokens[index].event == :on_tstring_content && !token.value.match?(/\\\r?\n\z/)
token.value << tokens[index].value
index += 1
end
end
end
end
return results
end
# Otherwise, we're going to run through each token in the list and
# insert on_ignored_sp tokens for the amount of dedent that we need to
# perform. We also need to remove the dedent from the beginning of
# each line of plain string content tokens.
results = [] #: Array[Token]
dedent_next = true
embexpr_balance = 0
tokens.each do |token|
# Notice that the structure of this conditional largely matches the
# whitespace calculation we performed above. This is because
# checking if the subsequent token needs to be dedented is common to
# both the dedent calculation and the ignored_sp insertion.
case token.event
when :on_embexpr_beg
embexpr_balance += 1
results << token
when :on_embexpr_end
embexpr_balance -= 1
results << token
when :on_tstring_content
if embexpr_balance == 0
# Here we're going to split the string on newlines, but maintain
# the newlines in the resulting array. We'll do that with a look
# behind assertion.
splits = token.value.split(/(?<=\n)/)
index = 0
while index < splits.length
line = splits[index]
lineno = token[0][0] + index
column = token[0][1]
# Blank lines do not count toward common leading whitespace
# calculation and do not need to be dedented.
if dedent_next || index > 0
column = 0
end
# If the dedent is 0 and we're not supposed to dedent the next
# line or this line doesn't start with whitespace, then we
# should concatenate the rest of the string to match ripper.
if dedent == 0 && (!dedent_next || !line.start_with?(/\s/))
line = splits[index..].join
index = splits.length
end
# If we are supposed to dedent this line or if this is not the
# first line of the string and this line isn't entirely blank,
# then we need to insert an on_ignored_sp token and remove the
# dedent from the beginning of the line.
if (dedent > 0) && (dedent_next || index > 0)
deleting = 0
deleted_chars = [] #: Array[String]
# Gather up all of the characters that we're going to
# delete, stopping when you hit a character that would put
# you over the dedent amount.
line.each_char.with_index do |char, i|
case char
when "\r"
if line[i + 1] == "\n"
break
end
when "\n"
break
when "\t"
deleting = deleting - (deleting % TAB_WIDTH) + TAB_WIDTH
else
deleting += 1
end
break if deleting > dedent
deleted_chars << char
end
# If we have something to delete, then delete it from the
# string and insert an on_ignored_sp token.
if deleted_chars.any?
ignored = deleted_chars.join
line.delete_prefix!(ignored)
results << Token.new([[lineno, 0], :on_ignored_sp, ignored, token[3]])
column = ignored.length
end
end
results << Token.new([[lineno, column], token[1], line, token[3]]) unless line.empty?
index += 1
end
else
results << token
end
else
results << token
end
dedent_next =
((token.event == :on_tstring_content) || (token.event == :on_heredoc_end)) &&
embexpr_balance == 0
end
results
end
end
# Here we will split between the two types of heredocs and return the
# object that will store their tokens.
def self.build(opening)
case opening.value[2]
when "~"
DedentingHeredoc.new
when "-"
DashHeredoc.new(opening.value[3] != "'")
else
PlainHeredoc.new
end
end
end
private_constant :Heredoc
attr_reader :source, :options
def initialize(source, **options)
@source = source
@options = options
end
def result
tokens = [] #: Array[LexCompat::Token]
state = :default
heredoc_stack = [[]] #: Array[Array[Heredoc::PlainHeredoc | Heredoc::DashHeredoc | Heredoc::DedentingHeredoc]]
result = Prism.lex(source, **options)
result_value = result.value
previous_state = nil #: Ripper::Lexer::State?
last_heredoc_end = nil #: Integer?
# In previous versions of Ruby, Ripper wouldn't flush the bom before the
# first token, so we had to have a hack in place to account for that. This
# checks for that behavior.
bom_flushed = Ripper.lex("\xEF\xBB\xBF# test")[0][0][1] == 0
bom = source.byteslice(0..2) == "\xEF\xBB\xBF"
result_value.each_with_index do |(token, lex_state), index|
lineno = token.location.start_line
column = token.location.start_column
# If there's a UTF-8 byte-order mark as the start of the file, then for
# certain tokens ripper sets the first token back by 3 bytes. It also
# keeps the byte order mark in the first token's value. This is weird,
# and I don't want to mirror that in our parser. So instead, we'll match
# up the columns and values here.
if bom && lineno == 1
column -= 3
if index == 0 && column == 0 && !bom_flushed
flushed =
case token.type
when :BACK_REFERENCE, :INSTANCE_VARIABLE, :CLASS_VARIABLE,
:GLOBAL_VARIABLE, :NUMBERED_REFERENCE, :PERCENT_LOWER_I,
:PERCENT_LOWER_X, :PERCENT_LOWER_W, :PERCENT_UPPER_I,
:PERCENT_UPPER_W, :STRING_BEGIN
true
when :REGEXP_BEGIN, :SYMBOL_BEGIN
token.value.start_with?("%")
else
false
end
unless flushed
column -= 3
value = token.value
value.prepend(String.new("\xEF\xBB\xBF", encoding: value.encoding))
end
end
end
event = RIPPER.fetch(token.type)
value = token.value
lex_state = Ripper::Lexer::State.new(lex_state)
token =
case event
when :on___end__
EndContentToken.new([[lineno, column], event, value, lex_state])
when :on_comment
IgnoreStateToken.new([[lineno, column], event, value, lex_state])
when :on_heredoc_end
# Heredoc end tokens can be emitted in an odd order, so we don't
# want to bother comparing the state on them.
last_heredoc_end = token.location.end_offset
IgnoreStateToken.new([[lineno, column], event, value, lex_state])
when :on_ident
if lex_state == Ripper::EXPR_END
# If we have an identifier that follows a method name like:
#
# def foo bar
#
# then Ripper will mark bar as END|LABEL if there is a local in a
# parent scope named bar because it hasn't pushed the local table
# yet. We do this more accurately, so we need to allow comparing
# against both END and END|LABEL.
ParamToken.new([[lineno, column], event, value, lex_state])
elsif lex_state == Ripper::EXPR_END | Ripper::EXPR_LABEL
# In the event that we're comparing identifiers, we're going to
# allow a little divergence. Ripper doesn't account for local
# variables introduced through named captures in regexes, and we
# do, which accounts for this difference.
IdentToken.new([[lineno, column], event, value, lex_state])
else
Token.new([[lineno, column], event, value, lex_state])
end
when :on_embexpr_end
IgnoreStateToken.new([[lineno, column], event, value, lex_state])
when :on_ignored_nl
# Ignored newlines can occasionally have a LABEL state attached to
# them which doesn't actually impact anything. We don't mirror that
# state so we ignored it.
IgnoredNewlineToken.new([[lineno, column], event, value, lex_state])
when :on_regexp_end
# On regex end, Ripper scans and then sets end state, so the ripper
# lexed output is begin, when it should be end. prism sets lex state
# correctly to end state, but we want to be able to compare against
# Ripper's lexed state. So here, if it's a regexp end token, we
# output the state as the previous state, solely for the sake of
# comparison.
previous_token = result_value[index - 1][0]
lex_state =
if RIPPER.fetch(previous_token.type) == :on_embexpr_end
# If the previous token is embexpr_end, then we have to do even
# more processing. The end of an embedded expression sets the
# state to the state that it had at the beginning of the
# embedded expression. So we have to go and find that state and
# set it here.
counter = 1
current_index = index - 1
until counter == 0
current_index -= 1
current_event = RIPPER.fetch(result_value[current_index][0].type)
counter += { on_embexpr_beg: -1, on_embexpr_end: 1 }[current_event] || 0
end
Ripper::Lexer::State.new(result_value[current_index][1])
else
previous_state
end
Token.new([[lineno, column], event, value, lex_state])
when :on_eof
previous_token = result_value[index - 1][0]
# If we're at the end of the file and the previous token was a
# comment and there is still whitespace after the comment, then
# Ripper will append a on_nl token (even though there isn't
# necessarily a newline). We mirror that here.
if previous_token.type == :COMMENT
# If the comment is at the start of a heredoc: <<HEREDOC # comment
# then the comment's end_offset is up near the heredoc_beg.
# This is not the correct offset to use for figuring out if
# there is trailing whitespace after the last token.
# Use the greater offset of the two to determine the start of
# the trailing whitespace.
start_offset = [previous_token.location.end_offset, last_heredoc_end].compact.max
end_offset = token.location.start_offset
if start_offset < end_offset
if bom
start_offset += 3
end_offset += 3
end
tokens << Token.new([[lineno, 0], :on_nl, source.byteslice(start_offset...end_offset), lex_state])
end
end
Token.new([[lineno, column], event, value, lex_state])
else
Token.new([[lineno, column], event, value, lex_state])
end
previous_state = lex_state
# The order in which tokens appear in our lexer is different from the
# order that they appear in Ripper. When we hit the declaration of a
# heredoc in prism, we skip forward and lex the rest of the content of
# the heredoc before going back and lexing at the end of the heredoc
# identifier.
#
# To match up to ripper, we keep a small state variable around here to
# track whether we're in the middle of a heredoc or not. In this way we
# can shuffle around the token to match Ripper's output.
case state
when :default
# The default state is when there are no heredocs at all. In this
# state we can append the token to the list of tokens and move on.
tokens << token
# If we get the declaration of a heredoc, then we open a new heredoc
# and move into the heredoc_opened state.
if event == :on_heredoc_beg
state = :heredoc_opened
heredoc_stack.last << Heredoc.build(token)
end
when :heredoc_opened
# The heredoc_opened state is when we've seen the declaration of a
# heredoc and are now lexing the body of the heredoc. In this state we
# push tokens onto the most recently created heredoc.
heredoc_stack.last.last << token
case event
when :on_heredoc_beg
# If we receive a heredoc declaration while lexing the body of a
# heredoc, this means we have nested heredocs. In this case we'll
# push a new heredoc onto the stack and stay in the heredoc_opened
# state since we're now lexing the body of the new heredoc.
heredoc_stack << [Heredoc.build(token)]
when :on_heredoc_end
# If we receive the end of a heredoc, then we're done lexing the
# body of the heredoc. In this case we now have a completed heredoc
# but need to wait for the next newline to push it into the token
# stream.
state = :heredoc_closed
end
when :heredoc_closed
if %i[on_nl on_ignored_nl on_comment].include?(event) || (event == :on_tstring_content && value.end_with?("\n"))
if heredoc_stack.size > 1
flushing = heredoc_stack.pop
heredoc_stack.last.last << token
flushing.each do |heredoc|
heredoc.to_a.each do |flushed_token|
heredoc_stack.last.last << flushed_token
end
end
state = :heredoc_opened
next
end
elsif event == :on_heredoc_beg
tokens << token
state = :heredoc_opened
heredoc_stack.last << Heredoc.build(token)
next
elsif heredoc_stack.size > 1
heredoc_stack[-2].last << token
next
end
heredoc_stack.last.each do |heredoc|
tokens.concat(heredoc.to_a)
end
heredoc_stack.last.clear
state = :default
tokens << token
end
end
# Drop the EOF token from the list
tokens = tokens[0...-1]
# We sort by location to compare against Ripper's output
tokens.sort_by!(&:location)
Result.new(tokens, result.comments, result.magic_comments, result.data_loc, result.errors, result.warnings, Source.for(source))
end
end
private_constant :LexCompat
# This is a class that wraps the Ripper lexer to produce almost exactly the
# same tokens.
class LexRipper # :nodoc:
attr_reader :source
def initialize(source)
@source = source
end
def result
previous = [] #: [[Integer, Integer], Symbol, String, untyped] | []
results = [] #: Array[[[Integer, Integer], Symbol, String, untyped]]
lex(source).each do |token|
case token[1]
when :on_sp
# skip
when :on_tstring_content
if previous[1] == :on_tstring_content && (token[2].start_with?("\#$") || token[2].start_with?("\#@"))
previous[2] << token[2]
else
results << token
previous = token
end
when :on_words_sep
if previous[1] == :on_words_sep
previous[2] << token[2]
else
results << token
previous = token
end
else
results << token
previous = token
end
end
results
end
private
if Ripper.method(:lex).parameters.assoc(:keyrest)
def lex(source)
Ripper.lex(source, raise_errors: true)
end
else
def lex(source)
ripper = Ripper::Lexer.new(source)
ripper.lex.tap do |result|
raise SyntaxError, ripper.errors.map(&:message).join(' ;') if ripper.errors.any?
end
end
end
end
private_constant :LexRipper
end
|