summaryrefslogtreecommitdiff
path: root/prism/util/pm_integer.c
blob: 4caedc412111c6f4e1b2cbd27312c7807506725d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
#include "prism/util/pm_integer.h"

/**
 * Adds two positive pm_integer_t with the given base.
 * Return pm_integer_t with values allocated. Not normalized.
 */
static pm_integer_t
big_add(pm_integer_t left_, pm_integer_t right_, uint64_t base) {
    pm_integer_t left = left_.values ? left_ : (pm_integer_t) { 0, 1, &left_.value, false };
    pm_integer_t right = right_.values ? right_ : (pm_integer_t) { 0, 1, &right_.value, false };
    size_t length = left.length < right.length ? right.length : left.length;
    uint32_t *values = (uint32_t*) malloc(sizeof(uint32_t) * (length + 1));
    uint64_t carry = 0;
    for (size_t i = 0; i < length; i++) {
        uint64_t sum = carry + (i < left.length ? left.values[i] : 0) + (i < right.length ? right.values[i] : 0);
        values[i] = (uint32_t) (sum % base);
        carry = sum / base;
    }
    if (carry > 0) {
        values[length] = (uint32_t) carry;
        length++;
    }
    return (pm_integer_t) { 0, length, values, false };
}

/**
 * Internal use for karatsuba_multiply. Calculates `a - b - c` with the given
 * base. Assume a, b, c, a - b - c all to be poitive.
 * Return pm_integer_t with values allocated. Not normalized.
 */
static pm_integer_t
big_sub2(pm_integer_t a_, pm_integer_t b_, pm_integer_t c_, uint64_t base) {
    pm_integer_t a = a_.values ? a_ : (pm_integer_t) { 0, 1, &a_.value, false };
    pm_integer_t b = b_.values ? b_ : (pm_integer_t) { 0, 1, &b_.value, false };
    pm_integer_t c = c_.values ? c_ : (pm_integer_t) { 0, 1, &c_.value, false };
    size_t length = a.length;
    uint32_t *values = (uint32_t*) malloc(sizeof(uint32_t) * length);
    int64_t carry = 0;
    for (size_t i = 0; i < length; i++) {
        int64_t sub = carry + a.values[i] - (i < b.length ? b.values[i] : 0) - (i < c.length ? c.values[i] : 0);
        if (sub >= 0) {
            values[i] = (uint32_t) sub;
            carry = 0;
        } else {
            sub +=  2 * (int64_t) base;
            values[i] = (uint32_t) ((uint64_t) sub % base);
            carry = sub / (int64_t) base - 2;
        }
    }
    while (length > 1 && values[length - 1] == 0) length--;
    return (pm_integer_t) { 0, length, values, false };
}

/**
 * Multiply two positive integers with the given base using karatsuba algorithm.
 * Return pm_integer_t with values allocated. Not normalized.
 */
static pm_integer_t
karatsuba_multiply(pm_integer_t left_, pm_integer_t right_, uint64_t base) {
    pm_integer_t left = left_.values ? left_ : (pm_integer_t) { 0, 1, &left_.value, false };
    pm_integer_t right = right_.values ? right_ : (pm_integer_t) { 0, 1, &right_.value, false };
    if (left.length > right.length) {
        pm_integer_t temp = left;
        left = right;
        right = temp;
    }
    if (left.length <= 10) {
        size_t length = left.length + right.length;
        uint32_t *values = (uint32_t*) calloc(length, sizeof(uint32_t));
        for (size_t i = 0; i < left.length; i++) {
            uint32_t carry = 0;
            for (size_t j = 0; j < right.length; j++) {
                uint64_t product = (uint64_t) left.values[i] * right.values[j] + values[i + j] + carry;
                values[i + j] = (uint32_t) (product % base);
                carry = (uint32_t) (product / base);
            }
            values[i + right.length] = carry;
        }
        while (length > 1 && values[length - 1] == 0) length--;
        return (pm_integer_t) { 0, length, values, false };
    }
    if (left.length * 2 <= right.length) {
        uint32_t *values = (uint32_t*) calloc(left.length + right.length, sizeof(uint32_t));
        for (size_t start_offset = 0; start_offset < right.length; start_offset += left.length) {
            size_t end_offset = start_offset + left.length;
            if (end_offset > right.length) end_offset = right.length;
            pm_integer_t sliced_right = { 0, end_offset - start_offset, right.values + start_offset, false };
            pm_integer_t v = karatsuba_multiply(left, sliced_right, base);
            uint32_t carry = 0;
            for (size_t i = 0; i < v.length; i++) {
                uint64_t sum = (uint64_t) values[start_offset + i] + v.values[i] + carry;
                values[start_offset + i] = (uint32_t) (sum % base);
                carry = (uint32_t) (sum / base);
            }
            if (carry > 0) values[start_offset + v.length] += carry;
            pm_integer_free(&v);
        }
        return (pm_integer_t) { 0, left.length + right.length, values, false };
    }
    size_t half = left.length / 2;
    pm_integer_t x0 = { 0, half, left.values, false };
    pm_integer_t x1 = { 0, left.length - half, left.values + half, false };
    pm_integer_t y0 = { 0, half, right.values, false };
    pm_integer_t y1 = { 0, right.length - half, right.values + half, false };
    pm_integer_t z0 = karatsuba_multiply(x0, y0, base);
    pm_integer_t z2 = karatsuba_multiply(x1, y1, base);

    // For simplicity to avoid considering negative values,
    // use `z1 = (x0 + x1) * (y0 + y1) - z0 - z2` instead of original karatsuba algorithm.
    pm_integer_t x01 = big_add(x0, x1, base);
    pm_integer_t y01 = big_add(y0, y1, base);
    pm_integer_t xy = karatsuba_multiply(x01, y01, base);
    pm_integer_t z1 = big_sub2(xy, z0, z2, base);

    size_t length = left.length + right.length;
    uint32_t *values = (uint32_t*) calloc(length, sizeof(uint32_t));
    memcpy(values, z0.values, sizeof(uint32_t) * z0.length);
    memcpy(values + 2 * half, z2.values, sizeof(uint32_t) * z2.length);
    uint32_t carry = 0;
    for(size_t i = 0; i < z1.length; i++) {
        uint64_t sum = (uint64_t) carry + values[i + half] + z1.values[i];
        values[i + half] = (uint32_t) (sum % base);
        carry = (uint32_t) (sum / base);
    }
    for(size_t i = half + z1.length; carry > 0; i++) {
        uint64_t sum = (uint64_t) carry + values[i];
        values[i] = (uint32_t) (sum % base);
        carry = (uint32_t) (sum / base);
    }
    while (length > 1 && values[length - 1] == 0) length--;
    pm_integer_free(&z0);
    pm_integer_free(&z1);
    pm_integer_free(&z2);
    pm_integer_free(&x01);
    pm_integer_free(&y01);
    pm_integer_free(&xy);
    return (pm_integer_t) { 0, length, values, false };
}

/**
 * Return the value of a digit in a uint32_t.
 */
static uint32_t
pm_integer_parse_digit(const uint8_t character) {
    switch (character) {
        case '0': return 0;
        case '1': return 1;
        case '2': return 2;
        case '3': return 3;
        case '4': return 4;
        case '5': return 5;
        case '6': return 6;
        case '7': return 7;
        case '8': return 8;
        case '9': return 9;
        case 'a': case 'A': return 10;
        case 'b': case 'B': return 11;
        case 'c': case 'C': return 12;
        case 'd': case 'D': return 13;
        case 'e': case 'E': return 14;
        case 'f': case 'F': return 15;
        default: assert(false && "unreachable"); return 0;
    }
}

/**
 * Create a pm_integer_t from uint64_t with the given base.
 */
static pm_integer_t
pm_integer_from_uint64(uint64_t value, uint64_t base) {
    if (value < base) {
        return (pm_integer_t) { (uint32_t) value, 0, NULL, false };
    }
    uint64_t v = value;
    size_t len = 0;
    while (value > 0) { len++; value /= base; }
    uint32_t *values = (uint32_t*) malloc(sizeof(uint32_t) * len);
    for (size_t i = 0; i < len; i++) {
        values[i] = (uint32_t) (v % base);
        v /= base;
    }
    return (pm_integer_t) { 0, len, values, false };
}

/**
 * Normalize pm_integer_t.
 * Heading zero values will be removed. If the integer fits into uint32_t,
 * values is set to NULL, length is set to 0, and value field will be used.
 */
static void
pm_integer_normalize(pm_integer_t *integer) {
    if (integer->values == NULL) {
        return;
    }
    while (integer->length > 1 && integer->values[integer->length - 1] == 0) {
        integer->length--;
    }
    if (integer->length > 1) {
        return;
    }

    uint32_t value = integer->values[0];
    bool negative = integer->negative && value != 0;
    pm_integer_free(integer);
    *integer = (pm_integer_t) { value, 0, NULL, negative };
}

/**
 * Convert base of the integer.
 * In practice, it converts 10**9 to 1<<32 or 1<<32 to 10**9.
 */
static pm_integer_t
pm_integer_convert_base(pm_integer_t source_, uint64_t base_from, uint64_t base_to) {
    pm_integer_t source = source_.values ? source_ : (pm_integer_t) { 0, 1, &source_.value, source_.negative };
    size_t bigints_length = (source.length + 1) / 2;
    pm_integer_t *bigints = (pm_integer_t*) malloc(sizeof(pm_integer_t) * bigints_length);
    for (size_t i = 0; i < source.length; i += 2) {
        uint64_t v = source.values[i] + base_from * (i + 1 < source.length ? source.values[i + 1] : 0);
        bigints[i / 2] = pm_integer_from_uint64(v, base_to);
    }
    pm_integer_t base = pm_integer_from_uint64(base_from, base_to);
    while (bigints_length > 1) {
        size_t new_length = (bigints_length + 1) / 2;
        pm_integer_t new_base = karatsuba_multiply(base, base, base_to);
        pm_integer_free(&base);
        base = new_base;
        pm_integer_t *new_bigints = (pm_integer_t*) malloc(sizeof(pm_integer_t) * new_length);
        for (size_t i = 0; i < bigints_length; i += 2) {
            if (i + 1 == bigints_length) {
                new_bigints[i / 2] = bigints[i];
            } else {
                pm_integer_t multiplied = karatsuba_multiply(base, bigints[i + 1], base_to);
                new_bigints[i / 2] = big_add(bigints[i], multiplied, base_to);
                pm_integer_free(&bigints[i]);
                pm_integer_free(&bigints[i + 1]);
                pm_integer_free(&multiplied);
            }
        }
        free(bigints);
        bigints = new_bigints;
        bigints_length = new_length;
    }
    pm_integer_free(&base);
    pm_integer_t result = bigints[0];
    result.negative = source.negative;
    free(bigints);
    pm_integer_normalize(&result);
    return result;
}

/**
 * Convert digits to integer with the given power-of-two base.
 */
static void
pm_integer_parse_powof2(pm_integer_t *integer, uint32_t base, const uint8_t *digits, size_t digits_length) {
    size_t bit = 1;
    while (base > (uint32_t) (1 << bit)) bit++;
    size_t length = (digits_length * bit + 31) / 32;
    uint32_t *values = (uint32_t*) calloc(length, sizeof(uint32_t));
    for (size_t i = 0; i < digits_length; i++) {
        size_t bit_position = bit * (digits_length - i - 1);
        uint32_t value = digits[i];
        size_t index = bit_position / 32;
        size_t shift = bit_position % 32;
        values[index] |= value << shift;
        if (32 - shift < bit) values[index + 1] |= value >> (32 - shift);
    }
    while (length > 1 && values[length - 1] == 0) length--;
    *integer = (pm_integer_t) { 0, length, values, false };
    pm_integer_normalize(integer);
}

/**
 * Convert decimal digits to pm_integer_t.
 */
static void
pm_integer_parse_decimal(pm_integer_t *integer, const uint8_t *digits, size_t digits_length) {
    // Construct a bigdecimal with base = 10**9 from the digits
    const size_t batch = 9;
    size_t values_length = (digits_length + batch - 1) / batch;
    pm_integer_t decimal = { 0, values_length, (uint32_t*) calloc(values_length, sizeof(uint32_t)), false };
    uint32_t v = 0;
    for (size_t i = 0; i < digits_length; i++) {
        v = v * 10 + digits[i];
        size_t reverse_index = digits_length - i - 1;
        if (reverse_index % batch == 0) {
            decimal.values[reverse_index / batch] = v;
            v = 0;
        }
    }
    // Convert base from 10**9 to 1<<32.
    *integer = pm_integer_convert_base(decimal, 1000000000, ((uint64_t) 1 << 32));
    pm_integer_free(&decimal);
}

/**
 * Parse a large integer from a string that does not fit into uint32_t.
 */
static void
pm_integer_parse_big(pm_integer_t *integer, uint32_t multiplier, const uint8_t *start, const uint8_t *end) {
    // Allocate an array to store digits.
    uint8_t *digits = malloc(sizeof(uint8_t) * (size_t) (end - start));
    size_t digits_length = 0;
    for (; start < end; start++) {
        if (*start == '_') continue;
        digits[digits_length++] = (uint8_t) pm_integer_parse_digit(*start);
    }
    // Construct pm_integer_t from the digits.
    if (multiplier == 10) {
        pm_integer_parse_decimal(integer, digits, digits_length);
    } else {
        pm_integer_parse_powof2(integer, multiplier, digits, digits_length);
    }
    free(digits);
}

/**
 * Parse an integer from a string. This assumes that the format of the integer
 * has already been validated, as internal validation checks are not performed
 * here.
 */
PRISM_EXPORTED_FUNCTION void
pm_integer_parse(pm_integer_t *integer, pm_integer_base_t base, const uint8_t *start, const uint8_t *end) {
    // Ignore unary +. Unary + is parsed differently and will not end up here.
    // Instead, it will modify the parsed integer later.
    if (*start == '+') start++;

    // Determine the multiplier from the base, and skip past any prefixes.
    uint32_t multiplier = 10;
    switch (base) {
        case PM_INTEGER_BASE_BINARY:
            start += 2; // 0b
            multiplier = 2;
            break;
        case PM_INTEGER_BASE_OCTAL:
            start++; // 0
            if (*start == '_' || *start == 'o' || *start == 'O') start++; // o
            multiplier = 8;
            break;
        case PM_INTEGER_BASE_DECIMAL:
            if (*start == '0' && (end - start) > 1) start += 2; // 0d
            break;
        case PM_INTEGER_BASE_HEXADECIMAL:
            start += 2; // 0x
            multiplier = 16;
            break;
        case PM_INTEGER_BASE_UNKNOWN:
            if (*start == '0' && (end - start) > 1) {
                switch (start[1]) {
                    case '_': start += 2; multiplier = 8; break;
                    case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': start++; multiplier = 8; break;
                    case 'b': case 'B': start += 2; multiplier = 2; break;
                    case 'o': case 'O': start += 2; multiplier = 8; break;
                    case 'd': case 'D': start += 2; break;
                    case 'x': case 'X': start += 2; multiplier = 16; break;
                    default: assert(false && "unreachable"); break;
                }
            }
            break;
    }

    // It's possible that we've consumed everything at this point if there is an
    // invalid integer. If this is the case, we'll just return 0.
    if (start >= end) return;

    const uint8_t *ptr = start;
    uint64_t value = pm_integer_parse_digit(*ptr++);
    for (; ptr < end; ptr++) {
        if (*ptr == '_') continue;
        value = value * multiplier + pm_integer_parse_digit(*ptr);
        if (value > UINT32_MAX) {
            // If the integer is too large to fit into a single uint32_t, then we'll
            // parse it as a big integer.
            pm_integer_parse_big(integer, multiplier, start, end);
            return;
        }
    }
    integer->value = (uint32_t) value;
}

/**
 * Return the memory size of the integer.
 */
size_t
pm_integer_memsize(const pm_integer_t *integer) {
    return sizeof(pm_integer_t) + integer->length * sizeof(uint32_t);
}

/**
 * Compare two integers. This function returns -1 if the left integer is less
 * than the right integer, 0 if they are equal, and 1 if the left integer is
 * greater than the right integer.
 */
int
pm_integer_compare(const pm_integer_t *left, const pm_integer_t *right) {
    if (left->negative != right->negative) return left->negative ? -1 : 1;
    int negative = left->negative ? -1 : 1;

    if (left->values == right->values) {
        if (left->value < right->value) return -1 * negative;
        if (left->value > right->value) return 1 * negative;
        return 0;
    }

    if (left->values == NULL || left->length < right->length) return -1 * negative;
    if (right->values == NULL || left->length > right->length) return 1 * negative;

    for (size_t i = 0; i < left->length; i++) {
        size_t index = left->length - i - 1;
        uint32_t l = left->values[index];
        uint32_t r = right->values[index];
        if (l < r) return -1 * negative;
        if (l > r) return 1 * negative;
    }

    return 0;
}

/**
 * Convert an integer to a decimal string.
 */
PRISM_EXPORTED_FUNCTION void
pm_integer_string(pm_buffer_t *buffer, const pm_integer_t *integer) {
    if (integer->negative) {
        pm_buffer_append_byte(buffer, '-');
    }

    if (integer->values == NULL) {
        pm_buffer_append_format(buffer, "%" PRIu32, integer->value);
        return;
    }
    if (integer->length == 2) {
        const uint64_t value = ((uint64_t) integer->values[0]) | ((uint64_t) integer->values[1] << 32);
        pm_buffer_append_format(buffer, "%" PRIu64, value);
        return;
    }

    // Convert base from 1<<32 to 10**9.
    pm_integer_t converted = pm_integer_convert_base(*integer, (uint64_t) 1 << 32, 1000000000);

    if (converted.values == NULL) {
        pm_buffer_append_format(buffer, "%" PRIu32, converted.value);
        pm_integer_free(&converted);
        return;
    }

    // Allocate a buffer that we'll copy the decimal digits into.
    size_t char_length = converted.length * 9;
    char *digits = calloc(char_length, sizeof(char));
    if (digits == NULL) return;

    // Pack bigdecimal to digits.
    for (size_t i = 0; i < converted.length; i++) {
        uint32_t v = converted.values[i];
        for (size_t j = 0; j < 9; j++) {
            digits[char_length - 9 * i - j - 1] = (char) ('0' + v % 10);
            v /= 10;
        }
    }
    size_t start_offset = 0;
    while (start_offset < char_length - 1 && digits[start_offset] == '0') start_offset++;

    // Finally, append the string to the buffer and free the digits.
    pm_buffer_append_string(buffer, digits + start_offset, char_length - start_offset);
    free(digits);
    pm_integer_free(&converted);
}

/**
 * Free the internal memory of an integer. This memory will only be allocated if
 * the integer exceeds the size of a single uint32_t.
 */
PRISM_EXPORTED_FUNCTION void
pm_integer_free(pm_integer_t *integer) {
    if (integer->values) {
        free(integer->values);
    }
}