1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
|
/* This implements sets using the same hash table implementation as in
st.c, but without a value for each hash entry. This results in the
same basic performance characteristics as when using an st table,
but uses 1/3 less memory.
*/
#include "id.h"
#include "internal.h"
#include "internal/bits.h"
#include "internal/hash.h"
#include "internal/proc.h"
#include "internal/sanitizers.h"
#include "internal/set_table.h"
#include "internal/symbol.h"
#include "internal/variable.h"
#include "ruby_assert.h"
#include <stdio.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <string.h>
#ifndef SET_DEBUG
#define SET_DEBUG 0
#endif
#if SET_DEBUG
#include "internal/gc.h"
#endif
static st_index_t
dbl_to_index(double d)
{
union {double d; st_index_t i;} u;
u.d = d;
return u.i;
}
static const uint64_t prime1 = ((uint64_t)0x2e0bb864 << 32) | 0xe9ea7df5;
static const uint32_t prime2 = 0x830fcab9;
static inline uint64_t
mult_and_mix(uint64_t m1, uint64_t m2)
{
#if defined HAVE_UINT128_T
uint128_t r = (uint128_t) m1 * (uint128_t) m2;
return (uint64_t) (r >> 64) ^ (uint64_t) r;
#else
uint64_t hm1 = m1 >> 32, hm2 = m2 >> 32;
uint64_t lm1 = m1, lm2 = m2;
uint64_t v64_128 = hm1 * hm2;
uint64_t v32_96 = hm1 * lm2 + lm1 * hm2;
uint64_t v1_32 = lm1 * lm2;
return (v64_128 + (v32_96 >> 32)) ^ ((v32_96 << 32) + v1_32);
#endif
}
static inline uint64_t
key64_hash(uint64_t key, uint32_t seed)
{
return mult_and_mix(key + seed, prime1);
}
/* Should cast down the result for each purpose */
#define set_index_hash(index) key64_hash(rb_hash_start(index), prime2)
static st_index_t
set_ident_hash(st_data_t n)
{
#ifdef USE_FLONUM /* RUBY */
/*
* - flonum (on 64-bit) is pathologically bad, mix the actual
* float value in, but do not use the float value as-is since
* many integers get interpreted as 2.0 or -2.0 [Bug #10761]
*/
if (FLONUM_P(n)) {
n ^= dbl_to_index(rb_float_value(n));
}
#endif
return (st_index_t)set_index_hash((st_index_t)n);
}
static const struct st_hash_type identhash = {
rb_st_numcmp,
set_ident_hash,
};
static const struct st_hash_type objhash = {
rb_any_cmp,
rb_any_hash,
};
VALUE rb_cSet;
#define id_each idEach
static ID id_each_entry;
static ID id_any_p;
static ID id_new;
static ID id_set_iter_lev;
#define RSET_INITIALIZED FL_USER1
#define RSET_LEV_MASK (FL_USER13 | FL_USER14 | FL_USER15 | /* FL 13..19 */ \
FL_USER16 | FL_USER17 | FL_USER18 | FL_USER19)
#define RSET_LEV_SHIFT (FL_USHIFT + 13)
#define RSET_LEV_MAX 127 /* 7 bits */
#define SET_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(SET_DEBUG, expr, #expr)
#define RSET_SIZE(set) set_table_size(RSET_TABLE(set))
#define RSET_EMPTY(set) (RSET_SIZE(set) == 0)
#define RSET_SIZE_NUM(set) SIZET2NUM(RSET_SIZE(set))
#define RSET_IS_MEMBER(sobj, item) set_lookup(RSET_TABLE(set), (st_data_t)(item))
#define RSET_COMPARE_BY_IDENTITY(set) (RSET_TABLE(set)->type == &identhash)
struct set_object {
set_table table;
};
static int
mark_key(st_data_t key, st_data_t data)
{
rb_gc_mark_movable((VALUE)key);
return ST_CONTINUE;
}
static void
set_mark(void *ptr)
{
struct set_object *sobj = ptr;
if (sobj->table.entries) set_foreach(&sobj->table, mark_key, 0);
}
static void
set_free_embedded(struct set_object *sobj)
{
free((&sobj->table)->bins);
free((&sobj->table)->entries);
}
static void
set_free(void *ptr)
{
struct set_object *sobj = ptr;
set_free_embedded(sobj);
memset(&sobj->table, 0, sizeof(sobj->table));
}
static size_t
set_size(const void *ptr)
{
const struct set_object *sobj = ptr;
/* Do not count the table size twice, as it is embedded */
return (unsigned long)set_memsize(&sobj->table) - sizeof(sobj->table);
}
static int
set_foreach_replace(st_data_t key, st_data_t argp, int error)
{
if (rb_gc_location((VALUE)key) != (VALUE)key) {
return ST_REPLACE;
}
return ST_CONTINUE;
}
static int
set_replace_ref(st_data_t *key, st_data_t argp, int existing)
{
if (rb_gc_location((VALUE)*key) != (VALUE)*key) {
*key = rb_gc_location((VALUE)*key);
}
return ST_CONTINUE;
}
static void
set_compact(void *ptr)
{
struct set_object *sobj = ptr;
set_compact_table(&sobj->table);
set_foreach_with_replace(&sobj->table, set_foreach_replace, set_replace_ref, 0);
}
static const rb_data_type_t set_data_type = {
.wrap_struct_name = "set",
.function = {
.dmark = set_mark,
.dfree = set_free,
.dsize = set_size,
.dcompact = set_compact,
},
.flags = RUBY_TYPED_EMBEDDABLE | RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FROZEN_SHAREABLE
};
static inline set_table *
RSET_TABLE(VALUE set)
{
struct set_object *sobj;
TypedData_Get_Struct(set, struct set_object, &set_data_type, sobj);
return &sobj->table;
}
static unsigned long
iter_lev_in_ivar(VALUE set)
{
VALUE levval = rb_ivar_get(set, id_set_iter_lev);
SET_ASSERT(FIXNUM_P(levval));
long lev = FIX2LONG(levval);
SET_ASSERT(lev >= 0);
return (unsigned long)lev;
}
void rb_ivar_set_internal(VALUE obj, ID id, VALUE val);
static void
iter_lev_in_ivar_set(VALUE set, unsigned long lev)
{
SET_ASSERT(lev >= RSET_LEV_MAX);
SET_ASSERT(POSFIXABLE(lev)); /* POSFIXABLE means fitting to long */
rb_ivar_set_internal(set, id_set_iter_lev, LONG2FIX((long)lev));
}
static inline unsigned long
iter_lev_in_flags(VALUE set)
{
return (unsigned long)((RBASIC(set)->flags >> RSET_LEV_SHIFT) & RSET_LEV_MAX);
}
static inline void
iter_lev_in_flags_set(VALUE set, unsigned long lev)
{
SET_ASSERT(lev <= RSET_LEV_MAX);
RBASIC(set)->flags = ((RBASIC(set)->flags & ~RSET_LEV_MASK) | ((VALUE)lev << RSET_LEV_SHIFT));
}
static inline bool
set_iterating_p(VALUE set)
{
return iter_lev_in_flags(set) > 0;
}
static void
set_iter_lev_inc(VALUE set)
{
unsigned long lev = iter_lev_in_flags(set);
if (lev == RSET_LEV_MAX) {
lev = iter_lev_in_ivar(set) + 1;
if (!POSFIXABLE(lev)) { /* paranoiac check */
rb_raise(rb_eRuntimeError, "too much nested iterations");
}
}
else {
lev += 1;
iter_lev_in_flags_set(set, lev);
if (lev < RSET_LEV_MAX) return;
}
iter_lev_in_ivar_set(set, lev);
}
static void
set_iter_lev_dec(VALUE set)
{
unsigned long lev = iter_lev_in_flags(set);
if (lev == RSET_LEV_MAX) {
lev = iter_lev_in_ivar(set);
if (lev > RSET_LEV_MAX) {
iter_lev_in_ivar_set(set, lev-1);
return;
}
rb_attr_delete(set, id_set_iter_lev);
}
else if (lev == 0) {
rb_raise(rb_eRuntimeError, "iteration level underflow");
}
iter_lev_in_flags_set(set, lev - 1);
}
static VALUE
set_foreach_ensure(VALUE set)
{
set_iter_lev_dec(set);
return 0;
}
typedef int set_foreach_func(VALUE, VALUE);
struct set_foreach_arg {
VALUE set;
set_foreach_func *func;
VALUE arg;
};
static int
set_iter_status_check(int status)
{
if (status == ST_CONTINUE) {
return ST_CHECK;
}
return status;
}
static int
set_foreach_iter(st_data_t key, st_data_t argp, int error)
{
struct set_foreach_arg *arg = (struct set_foreach_arg *)argp;
if (error) return ST_STOP;
set_table *tbl = RSET_TABLE(arg->set);
int status = (*arg->func)((VALUE)key, arg->arg);
if (RSET_TABLE(arg->set) != tbl) {
rb_raise(rb_eRuntimeError, "reset occurred during iteration");
}
return set_iter_status_check(status);
}
static VALUE
set_foreach_call(VALUE arg)
{
VALUE set = ((struct set_foreach_arg *)arg)->set;
int ret = 0;
ret = set_foreach_check(RSET_TABLE(set), set_foreach_iter,
(st_data_t)arg, (st_data_t)Qundef);
if (ret) {
rb_raise(rb_eRuntimeError, "ret: %d, set modified during iteration", ret);
}
return Qnil;
}
static void
set_iter(VALUE set, set_foreach_func *func, VALUE farg)
{
struct set_foreach_arg arg;
if (RSET_EMPTY(set))
return;
arg.set = set;
arg.func = func;
arg.arg = farg;
if (RB_OBJ_FROZEN(set)) {
set_foreach_call((VALUE)&arg);
}
else {
set_iter_lev_inc(set);
rb_ensure(set_foreach_call, (VALUE)&arg, set_foreach_ensure, set);
}
}
NORETURN(static void no_new_item(void));
static void
no_new_item(void)
{
rb_raise(rb_eRuntimeError, "can't add a new item into set during iteration");
}
static void
set_compact_after_delete(VALUE set)
{
if (!set_iterating_p(set)) {
set_compact_table(RSET_TABLE(set));
}
}
static int
set_table_insert_wb(set_table *tab, VALUE set, VALUE key, VALUE *key_addr)
{
if (tab->type != &identhash && rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) {
key = rb_hash_key_str(key);
if (key_addr) *key_addr = key;
}
int ret = set_insert(tab, (st_data_t)key);
if (ret == 0) RB_OBJ_WRITTEN(set, Qundef, key);
return ret;
}
static int
set_insert_wb(VALUE set, VALUE key, VALUE *key_addr)
{
return set_table_insert_wb(RSET_TABLE(set), set, key, key_addr);
}
static VALUE
set_alloc_with_size(VALUE klass, st_index_t size)
{
VALUE set;
struct set_object *sobj;
set = TypedData_Make_Struct(klass, struct set_object, &set_data_type, sobj);
set_init_table_with_size(&sobj->table, &objhash, size);
return set;
}
static VALUE
set_s_alloc(VALUE klass)
{
return set_alloc_with_size(klass, 0);
}
static VALUE
set_s_create(int argc, VALUE *argv, VALUE klass)
{
VALUE set = set_alloc_with_size(klass, argc);
set_table *table = RSET_TABLE(set);
int i;
for (i=0; i < argc; i++) {
set_table_insert_wb(table, set, argv[i], NULL);
}
return set;
}
static void
check_set(VALUE arg)
{
if (!rb_obj_is_kind_of(arg, rb_cSet)) {
rb_raise(rb_eArgError, "value must be a set");
}
}
static ID
enum_method_id(VALUE other)
{
if (rb_respond_to(other, id_each_entry)) {
return id_each_entry;
}
else if (rb_respond_to(other, id_each)) {
return id_each;
}
else {
rb_raise(rb_eArgError, "value must be enumerable");
}
}
static VALUE
set_enum_size(VALUE set, VALUE args, VALUE eobj)
{
return RSET_SIZE_NUM(set);
}
static VALUE
set_initialize_without_block(RB_BLOCK_CALL_FUNC_ARGLIST(i, set))
{
VALUE element = i;
set_insert_wb(set, element, &element);
return element;
}
static VALUE
set_initialize_with_block(RB_BLOCK_CALL_FUNC_ARGLIST(i, set))
{
VALUE element = rb_yield(i);
set_insert_wb(set, element, &element);
return element;
}
/*
* call-seq:
* Set.new -> new_set
* Set.new(enum) -> new_set
* Set.new(enum) { |elem| ... } -> new_set
*
* Creates a new set containing the elements of the given enumerable
* object.
*
* If a block is given, the elements of enum are preprocessed by the
* given block.
*
* Set.new([1, 2]) #=> #<Set: {1, 2}>
* Set.new([1, 2, 1]) #=> #<Set: {1, 2}>
* Set.new([1, 'c', :s]) #=> #<Set: {1, "c", :s}>
* Set.new(1..5) #=> #<Set: {1, 2, 3, 4, 5}>
* Set.new([1, 2, 3]) { |x| x * x } #=> #<Set: {1, 4, 9}>
*/
static VALUE
set_i_initialize(int argc, VALUE *argv, VALUE set)
{
if (RBASIC(set)->flags & RSET_INITIALIZED) {
rb_raise(rb_eRuntimeError, "cannot reinitialize set");
}
RBASIC(set)->flags |= RSET_INITIALIZED;
VALUE other;
rb_check_arity(argc, 0, 1);
if (argc > 0 && (other = argv[0]) != Qnil) {
if (RB_TYPE_P(other, T_ARRAY)) {
long len = RARRAY_LEN(other);
if (RARRAY_LEN(other) != 0) {
set_table *into = RSET_TABLE(set);
VALUE key;
int block_given = rb_block_given_p();
RARRAY_PTR_USE(other, ptr, {
for(; len > 0; len--, ptr++) {
key = *ptr;
if (block_given) key = rb_yield(key);
set_table_insert_wb(into, set, key, NULL);
}
});
}
}
else {
rb_block_call(other, enum_method_id(other), 0, 0,
rb_block_given_p() ? set_initialize_with_block : set_initialize_without_block,
set);
}
}
return set;
}
static VALUE
set_i_initialize_copy(VALUE set, VALUE other)
{
if (set == other) return set;
if (set_iterating_p(set)) {
rb_raise(rb_eRuntimeError, "cannot replace set during iteration");
}
struct set_object *sobj;
TypedData_Get_Struct(set, struct set_object, &set_data_type, sobj);
set_free_embedded(sobj);
set_copy(&sobj->table, RSET_TABLE(other));
return set;
}
static int
set_inspect_i(st_data_t key, st_data_t arg)
{
VALUE str = (VALUE)arg;
if (RSTRING_LEN(str) > 8) {
rb_str_buf_cat_ascii(str, ", ");
}
rb_str_buf_append(str, rb_inspect((VALUE)key));
return ST_CONTINUE;
}
static VALUE
set_inspect(VALUE set, VALUE dummy, int recur)
{
VALUE str;
if (recur) return rb_usascii_str_new2("#<Set: {...}>");
str = rb_str_buf_new2("#<Set: {");
set_iter(set, set_inspect_i, str);
rb_str_buf_cat2(str, "}>");
return str;
}
/*
* call-seq:
* inspect -> new_string
*
* Returns a new string containing the set entries:
*
* s = Set.new
* s.inspect # => "#<Set: {}>"
* s.add(1)
* s.inspect # => "#<Set: {1}>"
* s.add(2)
* s.inspect # => "#<Set: {1, 2}>"
*
* Related: see {Methods for Converting}[rdoc-ref:Set@Methods+for+Converting].
*/
static VALUE
set_i_inspect(VALUE set)
{
return rb_exec_recursive(set_inspect, set, 0);
}
static int
set_to_a_i(st_data_t key, st_data_t arg)
{
rb_ary_push((VALUE)arg, (VALUE)key);
return ST_CONTINUE;
}
/*
* call-seq:
* to_a -> array
*
* Returns an array containing all elements in the set.
*
* Set[1, 2].to_a #=> [1, 2]
* Set[1, 'c', :s].to_a #=> [1, "c", :s]
*/
static VALUE
set_i_to_a(VALUE set)
{
st_index_t size = RSET_SIZE(set);
VALUE ary = rb_ary_new_capa(size);
if (size == 0) return ary;
if (ST_DATA_COMPATIBLE_P(VALUE)) {
RARRAY_PTR_USE(ary, ptr, {
size = set_keys(RSET_TABLE(set), ptr, size);
});
rb_gc_writebarrier_remember(ary);
rb_ary_set_len(ary, size);
}
else {
set_iter(set, set_to_a_i, (st_data_t)ary);
}
return ary;
}
/*
* call-seq:
* to_set(klass = Set, *args, &block) -> self or new_set
*
* Returns self if receiver is an instance of +Set+ and no arguments or
* block are given. Otherwise, converts the set to another with
* <tt>klass.new(self, *args, &block)</tt>.
*
* In subclasses, returns `klass.new(self, *args, &block)` unless overridden.
*/
static VALUE
set_i_to_set(int argc, VALUE *argv, VALUE set)
{
VALUE klass;
if (argc == 0) {
klass = rb_cSet;
argv = &set;
argc = 1;
}
else {
klass = argv[0];
argv[0] = set;
}
if (klass == rb_cSet && rb_obj_is_instance_of(set, rb_cSet) &&
argc == 1 && !rb_block_given_p()) {
return set;
}
return rb_funcall_passing_block(klass, id_new, argc, argv);
}
/*
* call-seq:
* join(separator=nil)-> new_string
*
* Returns a string created by converting each element of the set to a string.
*/
static VALUE
set_i_join(int argc, VALUE *argv, VALUE set)
{
rb_check_arity(argc, 0, 1);
return rb_ary_join(set_i_to_a(set), argc == 0 ? Qnil : argv[0]);
}
/*
* call-seq:
* add(obj) -> self
*
* Adds the given object to the set and returns self. Use `merge` to
* add many elements at once.
*
* Set[1, 2].add(3) #=> #<Set: {1, 2, 3}>
* Set[1, 2].add([3, 4]) #=> #<Set: {1, 2, [3, 4]}>
* Set[1, 2].add(2) #=> #<Set: {1, 2}>
*/
static VALUE
set_i_add(VALUE set, VALUE item)
{
rb_check_frozen(set);
if (set_iterating_p(set)) {
if (!set_lookup(RSET_TABLE(set), (st_data_t)item)) {
no_new_item();
}
}
else {
set_insert_wb(set, item, NULL);
}
return set;
}
/*
* call-seq:
* add?(obj) -> self or nil
*
* Adds the given object to the set and returns self. If the object is
* already in the set, returns nil.
*
* Set[1, 2].add?(3) #=> #<Set: {1, 2, 3}>
* Set[1, 2].add?([3, 4]) #=> #<Set: {1, 2, [3, 4]}>
* Set[1, 2].add?(2) #=> nil
*/
static VALUE
set_i_add_p(VALUE set, VALUE item)
{
rb_check_frozen(set);
if (set_iterating_p(set)) {
if (!set_lookup(RSET_TABLE(set), (st_data_t)item)) {
no_new_item();
}
return Qnil;
}
else {
return set_insert_wb(set, item, NULL) ? Qnil : set;
}
}
/*
* call-seq:
* delete(obj) -> self
*
* Deletes the given object from the set and returns self. Use subtract
* to delete many items at once.
*/
static VALUE
set_i_delete(VALUE set, VALUE item)
{
rb_check_frozen(set);
if (set_delete(RSET_TABLE(set), (st_data_t *)&item)) {
set_compact_after_delete(set);
}
return set;
}
/*
* call-seq:
* delete?(obj) -> self or nil
*
* Deletes the given object from the set and returns self. If the
* object is not in the set, returns nil.
*/
static VALUE
set_i_delete_p(VALUE set, VALUE item)
{
rb_check_frozen(set);
if (set_delete(RSET_TABLE(set), (st_data_t *)&item)) {
set_compact_after_delete(set);
return set;
}
return Qnil;
}
static int
set_delete_if_i(st_data_t key, st_data_t dummy)
{
return RTEST(rb_yield((VALUE)key)) ? ST_DELETE : ST_CONTINUE;
}
/*
* call-seq:
* delete_if { |o| ... } -> self
* delete_if -> enumerator
*
* Deletes every element of the set for which block evaluates to
* true, and returns self. Returns an enumerator if no block is given.
*/
static VALUE
set_i_delete_if(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
rb_check_frozen(set);
set_iter(set, set_delete_if_i, 0);
set_compact_after_delete(set);
return set;
}
/*
* call-seq:
* reject! { |o| ... } -> self
* reject! -> enumerator
*
* Equivalent to Set#delete_if, but returns nil if no changes were made.
* Returns an enumerator if no block is given.
*/
static VALUE
set_i_reject(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
rb_check_frozen(set);
set_table *table = RSET_TABLE(set);
size_t n = set_table_size(table);
set_iter(set, set_delete_if_i, 0);
if (n == set_table_size(table)) return Qnil;
set_compact_after_delete(set);
return set;
}
static int
set_classify_i(st_data_t key, st_data_t tmp)
{
VALUE* args = (VALUE*)tmp;
VALUE hash = args[0];
VALUE hash_key = rb_yield(key);
VALUE set = rb_hash_lookup2(hash, hash_key, Qundef);
if (set == Qundef) {
set = set_s_alloc(args[1]);
rb_hash_aset(hash, hash_key, set);
}
set_i_add(set, key);
return ST_CONTINUE;
}
/*
* call-seq:
* classify { |o| ... } -> hash
* classify -> enumerator
*
* Classifies the set by the return value of the given block and
* returns a hash of {value => set of elements} pairs. The block is
* called once for each element of the set, passing the element as
* parameter.
*
* files = Set.new(Dir.glob("*.rb"))
* hash = files.classify { |f| File.mtime(f).year }
* hash #=> {2000 => #<Set: {"a.rb", "b.rb"}>,
* # 2001 => #<Set: {"c.rb", "d.rb", "e.rb"}>,
* # 2002 => #<Set: {"f.rb"}>}
*
* Returns an enumerator if no block is given.
*/
static VALUE
set_i_classify(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
VALUE args[2];
args[0] = rb_hash_new();
args[1] = rb_obj_class(set);
set_iter(set, set_classify_i, (st_data_t)args);
return args[0];
}
struct set_divide_args {
VALUE self;
VALUE set_class;
VALUE final_set;
VALUE hash;
VALUE current_set;
VALUE current_item;
unsigned long ni;
unsigned long nj;
};
static VALUE
set_divide_block0(RB_BLOCK_CALL_FUNC_ARGLIST(j, arg))
{
struct set_divide_args *args = (struct set_divide_args *)arg;
if (args->nj > args->ni) {
VALUE i = args->current_item;
if (RTEST(rb_yield_values(2, i, j)) && RTEST(rb_yield_values(2, j, i))) {
VALUE hash = args->hash;
if (args->current_set == Qnil) {
VALUE set = rb_hash_aref(hash, j);
if (set == Qnil) {
VALUE both[2] = {i, j};
set = set_s_create(2, both, args->set_class);
rb_hash_aset(hash, i, set);
rb_hash_aset(hash, j, set);
set_i_add(args->final_set, set);
}
else {
set_i_add(set, i);
rb_hash_aset(hash, i, set);
}
args->current_set = set;
}
else {
set_i_add(args->current_set, j);
rb_hash_aset(hash, j, args->current_set);
}
}
}
args->nj++;
return j;
}
static VALUE
set_divide_block(RB_BLOCK_CALL_FUNC_ARGLIST(i, arg))
{
struct set_divide_args *args = (struct set_divide_args *)arg;
VALUE hash = args->hash;
args->current_set = rb_hash_aref(hash, i);
args->current_item = i;
args->nj = 0;
rb_block_call(args->self, id_each, 0, 0, set_divide_block0, arg);
if (args->current_set == Qnil) {
VALUE set = set_s_create(1, &i, args->set_class);
rb_hash_aset(hash, i, set);
set_i_add(args->final_set, set);
}
args->ni++;
return i;
}
static void set_merge_enum_into(VALUE set, VALUE arg);
/*
* call-seq:
* divide { |o1, o2| ... } -> set
* divide { |o| ... } -> set
* divide -> enumerator
*
* Divides the set into a set of subsets according to the commonality
* defined by the given block.
*
* If the arity of the block is 2, elements o1 and o2 are in common
* if both block.call(o1, o2) and block.call(o2, o1) are true.
* Otherwise, elements o1 and o2 are in common if
* block.call(o1) == block.call(o2).
*
* numbers = Set[1, 3, 4, 6, 9, 10, 11]
* set = numbers.divide { |i,j| (i - j).abs == 1 }
* set #=> #<Set: {#<Set: {1}>,
* # #<Set: {3, 4}>,
* # #<Set: {6}>}>
* # #<Set: {9, 10, 11}>,
*
* Returns an enumerator if no block is given.
*/
static VALUE
set_i_divide(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
if (rb_block_arity() == 2) {
VALUE final_set = set_s_create(0, 0, rb_cSet);
struct set_divide_args args = {
.self = set,
.set_class = rb_obj_class(set),
.final_set = final_set,
.hash = rb_hash_new(),
.current_set = 0,
.current_item = 0,
.ni = 0,
.nj = 0
};
rb_block_call(set, id_each, 0, 0, set_divide_block, (VALUE)&args);
return final_set;
}
VALUE values = rb_hash_values(set_i_classify(set));
set = set_alloc_with_size(rb_cSet, RARRAY_LEN(values));
set_merge_enum_into(set, values);
return set;
}
static int
set_clear_i(st_data_t key, st_data_t dummy)
{
return ST_DELETE;
}
/*
* call-seq:
* clear -> self
*
* Removes all elements and returns self.
*
* set = Set[1, 'c', :s] #=> #<Set: {1, "c", :s}>
* set.clear #=> #<Set: {}>
* set #=> #<Set: {}>
*/
static VALUE
set_i_clear(VALUE set)
{
rb_check_frozen(set);
if (RSET_SIZE(set) == 0) return set;
if (set_iterating_p(set)) {
set_iter(set, set_clear_i, 0);
}
else {
set_clear(RSET_TABLE(set));
set_compact_after_delete(set);
}
return set;
}
struct set_intersection_data {
VALUE set;
set_table *into;
set_table *other;
};
static int
set_intersection_i(st_data_t key, st_data_t tmp)
{
struct set_intersection_data *data = (struct set_intersection_data *)tmp;
if (set_lookup(data->other, key)) {
set_table_insert_wb(data->into, data->set, key, NULL);
}
return ST_CONTINUE;
}
static VALUE
set_intersection_block(RB_BLOCK_CALL_FUNC_ARGLIST(i, data))
{
set_intersection_i((st_data_t)i, (st_data_t)data);
return i;
}
/*
* call-seq:
* set & enum -> new_set
*
* Returns a new set containing elements common to the set and the given
* enumerable object.
*
* Set[1, 3, 5] & Set[3, 2, 1] #=> #<Set: {3, 1}>
* Set['a', 'b', 'z'] & ['a', 'b', 'c'] #=> #<Set: {"a", "b"}>
*/
static VALUE
set_i_intersection(VALUE set, VALUE other)
{
VALUE new_set = set_s_alloc(rb_obj_class(set));
set_table *stable = RSET_TABLE(set);
set_table *ntable = RSET_TABLE(new_set);
if (rb_obj_is_kind_of(other, rb_cSet)) {
set_table *otable = RSET_TABLE(other);
if (set_table_size(stable) >= set_table_size(otable)) {
/* Swap so we iterate over the smaller set */
otable = stable;
set = other;
}
struct set_intersection_data data = {
.set = new_set,
.into = ntable,
.other = otable
};
set_iter(set, set_intersection_i, (st_data_t)&data);
}
else {
struct set_intersection_data data = {
.set = new_set,
.into = ntable,
.other = stable
};
rb_block_call(other, enum_method_id(other), 0, 0, set_intersection_block, (VALUE)&data);
}
return new_set;
}
/*
* call-seq:
* include?(item) -> true or false
*
* Returns true if the set contains the given object:
*
* Set[1, 2, 3].include? 2 #=> true
* Set[1, 2, 3].include? 4 #=> false
*
* Note that <code>include?</code> and <code>member?</code> do not test member
* equality using <code>==</code> as do other Enumerables.
*
* This is aliased to #===, so it is usable in +case+ expressions:
*
* case :apple
* when Set[:potato, :carrot]
* "vegetable"
* when Set[:apple, :banana]
* "fruit"
* end
* # => "fruit"
*
* See also Enumerable#include?
*/
static VALUE
set_i_include(VALUE set, VALUE item)
{
return RBOOL(RSET_IS_MEMBER(set, item));
}
struct set_merge_args {
VALUE set;
set_table *into;
};
static int
set_merge_i(st_data_t key, st_data_t data)
{
struct set_merge_args *args = (struct set_merge_args *)data;
set_table_insert_wb(args->into, args->set, key, NULL);
return ST_CONTINUE;
}
static VALUE
set_merge_block(RB_BLOCK_CALL_FUNC_ARGLIST(key, set))
{
VALUE element = key;
set_insert_wb(set, element, &element);
return element;
}
static void
set_merge_enum_into(VALUE set, VALUE arg)
{
if (rb_obj_is_kind_of(arg, rb_cSet)) {
struct set_merge_args args = {
.set = set,
.into = RSET_TABLE(set)
};
set_iter(arg, set_merge_i, (st_data_t)&args);
}
else if (RB_TYPE_P(arg, T_ARRAY)) {
long len = RARRAY_LEN(arg);
if (RARRAY_LEN(arg) != 0) {
set_table *into = RSET_TABLE(set);
RARRAY_PTR_USE(arg, ptr, {
for(; len > 0; len--, ptr++) {
set_table_insert_wb(into, set, *ptr, NULL);
}
});
}
}
else {
rb_block_call(arg, enum_method_id(arg), 0, 0, set_merge_block, (VALUE)set);
}
}
/*
* call-seq:
* merge(*enums, **nil) -> self
*
* Merges the elements of the given enumerable objects to the set and
* returns self.
*/
static VALUE
set_i_merge(int argc, VALUE *argv, VALUE set)
{
if (rb_keyword_given_p()) {
rb_raise(rb_eArgError, "no keywords accepted");
}
rb_check_frozen(set);
int i;
for (i=0; i < argc; i++) {
set_merge_enum_into(set, argv[i]);
}
return set;
}
static VALUE
set_reset_table_with_type(VALUE set, const struct st_hash_type *type)
{
rb_check_frozen(set);
struct set_object *sobj;
TypedData_Get_Struct(set, struct set_object, &set_data_type, sobj);
set_table *old = &sobj->table;
size_t size = set_table_size(old);
if (size > 0) {
set_table *new = set_init_table_with_size(NULL, type, size);
struct set_merge_args args = {
.set = set,
.into = new
};
set_iter(set, set_merge_i, (st_data_t)&args);
set_free_embedded(sobj);
memcpy(&sobj->table, new, sizeof(*new));
free(new);
}
else {
sobj->table.type = type;
}
return set;
}
/*
* call-seq:
* compare_by_identity -> self
*
* Makes the set compare its elements by their identity and returns self.
*/
static VALUE
set_i_compare_by_identity(VALUE set)
{
if (RSET_COMPARE_BY_IDENTITY(set)) return set;
if (set_iterating_p(set)) {
rb_raise(rb_eRuntimeError, "compare_by_identity during iteration");
}
return set_reset_table_with_type(set, &identhash);
}
/*
* call-seq:
* compare_by_identity? -> true or false
*
* Returns true if the set will compare its elements by their
* identity. Also see Set#compare_by_identity.
*/
static VALUE
set_i_compare_by_identity_p(VALUE set)
{
return RBOOL(RSET_COMPARE_BY_IDENTITY(set));
}
/*
* call-seq:
* size -> integer
*
* Returns the number of elements.
*/
static VALUE
set_i_size(VALUE set)
{
return RSET_SIZE_NUM(set);
}
/*
* call-seq:
* empty? -> true or false
*
* Returns true if the set contains no elements.
*/
static VALUE
set_i_empty(VALUE set)
{
return RBOOL(RSET_EMPTY(set));
}
static int
set_xor_i(st_data_t key, st_data_t data)
{
VALUE element = (VALUE)key;
VALUE set = (VALUE)data;
set_table *table = RSET_TABLE(set);
if (set_table_insert_wb(table, set, element, &element)) {
set_delete(table, &element);
}
return ST_CONTINUE;
}
/*
* call-seq:
* set ^ enum -> new_set
*
* Returns a new set containing elements exclusive between the set and the
* given enumerable object. <tt>(set ^ enum)</tt> is equivalent to
* <tt>((set | enum) - (set & enum))</tt>.
*
* Set[1, 2] ^ Set[2, 3] #=> #<Set: {3, 1}>
* Set[1, 'b', 'c'] ^ ['b', 'd'] #=> #<Set: {"d", 1, "c"}>
*/
static VALUE
set_i_xor(VALUE set, VALUE other)
{
VALUE new_set;
if (rb_obj_is_kind_of(other, rb_cSet)) {
new_set = other;
}
else {
new_set = set_s_alloc(rb_obj_class(set));
set_merge_enum_into(new_set, other);
}
set_iter(set, set_xor_i, (st_data_t)new_set);
return new_set;
}
/*
* call-seq:
* set | enum -> new_set
*
* Returns a new set built by merging the set and the elements of the
* given enumerable object.
*
* Set[1, 2, 3] | Set[2, 4, 5] #=> #<Set: {1, 2, 3, 4, 5}>
* Set[1, 5, 'z'] | (1..6) #=> #<Set: {1, 5, "z", 2, 3, 4, 6}>
*/
static VALUE
set_i_union(VALUE set, VALUE other)
{
set = rb_obj_dup(set);
set_merge_enum_into(set, other);
return set;
}
static int
set_remove_i(st_data_t key, st_data_t from)
{
set_delete((struct set_table *)from, (st_data_t *)&key);
return ST_CONTINUE;
}
static VALUE
set_remove_block(RB_BLOCK_CALL_FUNC_ARGLIST(key, set))
{
rb_check_frozen(set);
set_delete(RSET_TABLE(set), (st_data_t *)&key);
return key;
}
static void
set_remove_enum_from(VALUE set, VALUE arg)
{
if (rb_obj_is_kind_of(arg, rb_cSet)) {
set_iter(arg, set_remove_i, (st_data_t)RSET_TABLE(set));
}
else {
rb_block_call(arg, enum_method_id(arg), 0, 0, set_remove_block, (VALUE)set);
}
}
/*
* call-seq:
* subtract(enum) -> self
*
* Deletes every element that appears in the given enumerable object
* and returns self.
*/
static VALUE
set_i_subtract(VALUE set, VALUE other)
{
rb_check_frozen(set);
set_remove_enum_from(set, other);
return set;
}
/*
* call-seq:
* set - enum -> new_set
*
* Returns a new set built by duplicating the set, removing every
* element that appears in the given enumerable object.
*
* Set[1, 3, 5] - Set[1, 5] #=> #<Set: {3}>
* Set['a', 'b', 'z'] - ['a', 'c'] #=> #<Set: {"b", "z"}>
*/
static VALUE
set_i_difference(VALUE set, VALUE other)
{
return set_i_subtract(rb_obj_dup(set), other);
}
static int
set_each_i(st_data_t key, st_data_t dummy)
{
rb_yield(key);
return ST_CONTINUE;
}
/*
* call-seq:
* each { |o| ... } -> self
* each -> enumerator
*
* Calls the given block once for each element in the set, passing
* the element as parameter. Returns an enumerator if no block is
* given.
*/
static VALUE
set_i_each(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
set_iter(set, set_each_i, 0);
return set;
}
static int
set_collect_i(st_data_t key, st_data_t data)
{
set_insert_wb((VALUE)data, rb_yield((VALUE)key), NULL);
return ST_CONTINUE;
}
/*
* call-seq:
* collect! { |o| ... } -> self
* collect! -> enumerator
*
* Replaces the elements with ones returned by +collect+.
* Returns an enumerator if no block is given.
*/
static VALUE
set_i_collect(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
rb_check_frozen(set);
VALUE new_set = set_s_alloc(rb_obj_class(set));
set_iter(set, set_collect_i, (st_data_t)new_set);
set_i_initialize_copy(set, new_set);
return set;
}
static int
set_keep_if_i(st_data_t key, st_data_t into)
{
if (!RTEST(rb_yield((VALUE)key))) {
set_delete((set_table *)into, &key);
}
return ST_CONTINUE;
}
/*
* call-seq:
* keep_if { |o| ... } -> self
* keep_if -> enumerator
*
* Deletes every element of the set for which block evaluates to false, and
* returns self. Returns an enumerator if no block is given.
*/
static VALUE
set_i_keep_if(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
rb_check_frozen(set);
set_iter(set, set_keep_if_i, (st_data_t)RSET_TABLE(set));
return set;
}
/*
* call-seq:
* select! { |o| ... } -> self
* select! -> enumerator
*
* Equivalent to Set#keep_if, but returns nil if no changes were made.
* Returns an enumerator if no block is given.
*/
static VALUE
set_i_select(VALUE set)
{
RETURN_SIZED_ENUMERATOR(set, 0, 0, set_enum_size);
rb_check_frozen(set);
set_table *table = RSET_TABLE(set);
size_t n = set_table_size(table);
set_iter(set, set_keep_if_i, (st_data_t)table);
return (n == set_table_size(table)) ? Qnil : set;
}
/*
* call-seq:
* replace(enum) -> self
*
* Replaces the contents of the set with the contents of the given
* enumerable object and returns self.
*
* set = Set[1, 'c', :s] #=> #<Set: {1, "c", :s}>
* set.replace([1, 2]) #=> #<Set: {1, 2}>
* set #=> #<Set: {1, 2}>
*/
static VALUE
set_i_replace(VALUE set, VALUE other)
{
rb_check_frozen(set);
if (rb_obj_is_kind_of(other, rb_cSet)) {
set_i_initialize_copy(set, other);
}
else {
if (set_iterating_p(set)) {
rb_raise(rb_eRuntimeError, "cannot replace set during iteration");
}
// make sure enum is enumerable before calling clear
enum_method_id(other);
set_clear(RSET_TABLE(set));
set_merge_enum_into(set, other);
}
return set;
}
/*
* call-seq:
* reset -> self
*
* Resets the internal state after modification to existing elements
* and returns self. Elements will be reindexed and deduplicated.
*/
static VALUE
set_i_reset(VALUE set)
{
if (set_iterating_p(set)) {
rb_raise(rb_eRuntimeError, "reset during iteration");
}
return set_reset_table_with_type(set, RSET_TABLE(set)->type);
}
static void set_flatten_merge(VALUE set, VALUE from, VALUE seen);
static int
set_flatten_merge_i(st_data_t item, st_data_t arg)
{
VALUE *args = (VALUE *)arg;
VALUE set = args[0];
if (rb_obj_is_kind_of(item, rb_cSet)) {
VALUE e_id = rb_obj_id(item);
VALUE hash = args[2];
switch(rb_hash_aref(hash, e_id)) {
case Qfalse:
return ST_CONTINUE;
case Qtrue:
rb_raise(rb_eArgError, "tried to flatten recursive Set");
default:
break;
}
rb_hash_aset(hash, e_id, Qtrue);
set_flatten_merge(set, item, hash);
rb_hash_aset(hash, e_id, Qfalse);
}
else {
set_i_add(set, item);
}
return ST_CONTINUE;
}
static void
set_flatten_merge(VALUE set, VALUE from, VALUE hash)
{
VALUE args[3] = {set, from, hash};
set_iter(from, set_flatten_merge_i, (st_data_t)args);
}
/*
* call-seq:
* flatten -> set
*
* Returns a new set that is a copy of the set, flattening each
* containing set recursively.
*/
static VALUE
set_i_flatten(VALUE set)
{
VALUE new_set = set_s_alloc(rb_obj_class(set));
set_flatten_merge(new_set, set, rb_hash_new());
return new_set;
}
static int
set_contains_set_i(st_data_t item, st_data_t arg)
{
if (rb_obj_is_kind_of(item, rb_cSet)) {
*(bool *)arg = true;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* flatten! -> self
*
* Equivalent to Set#flatten, but replaces the receiver with the
* result in place. Returns nil if no modifications were made.
*/
static VALUE
set_i_flatten_bang(VALUE set)
{
bool contains_set = false;
set_iter(set, set_contains_set_i, (st_data_t)&contains_set);
if (!contains_set) return Qnil;
rb_check_frozen(set);
return set_i_replace(set, set_i_flatten(set));
}
struct set_subset_data {
set_table *table;
VALUE result;
};
static int
set_le_i(st_data_t key, st_data_t arg)
{
struct set_subset_data *data = (struct set_subset_data *)arg;
if (set_lookup(data->table, key)) return ST_CONTINUE;
data->result = Qfalse;
return ST_STOP;
}
static VALUE
set_le(VALUE set, VALUE other)
{
struct set_subset_data data = {
.table = RSET_TABLE(other),
.result = Qtrue
};
set_iter(set, set_le_i, (st_data_t)&data);
return data.result;
}
/*
* call-seq:
* proper_subset?(set) -> true or false
*
* Returns true if the set is a proper subset of the given set.
*/
static VALUE
set_i_proper_subset(VALUE set, VALUE other)
{
check_set(other);
if (RSET_SIZE(set) >= RSET_SIZE(other)) return Qfalse;
return set_le(set, other);
}
/*
* call-seq:
* subset?(set) -> true or false
*
* Returns true if the set is a subset of the given set.
*/
static VALUE
set_i_subset(VALUE set, VALUE other)
{
check_set(other);
if (RSET_SIZE(set) > RSET_SIZE(other)) return Qfalse;
return set_le(set, other);
}
/*
* call-seq:
* proper_superset?(set) -> true or false
*
* Returns true if the set is a proper superset of the given set.
*/
static VALUE
set_i_proper_superset(VALUE set, VALUE other)
{
check_set(other);
if (RSET_SIZE(set) <= RSET_SIZE(other)) return Qfalse;
return set_le(other, set);
}
/*
* call-seq:
* superset?(set) -> true or false
*
* Returns true if the set is a superset of the given set.
*/
static VALUE
set_i_superset(VALUE set, VALUE other)
{
check_set(other);
if (RSET_SIZE(set) < RSET_SIZE(other)) return Qfalse;
return set_le(other, set);
}
static int
set_intersect_i(st_data_t key, st_data_t arg)
{
VALUE *args = (VALUE *)arg;
if (set_lookup((set_table *)args[0], key)) {
args[1] = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* intersect?(set) -> true or false
*
* Returns true if the set and the given enumerable have at least one
* element in common.
*
* Set[1, 2, 3].intersect? Set[4, 5] #=> false
* Set[1, 2, 3].intersect? Set[3, 4] #=> true
* Set[1, 2, 3].intersect? 4..5 #=> false
* Set[1, 2, 3].intersect? [3, 4] #=> true
*/
static VALUE
set_i_intersect(VALUE set, VALUE other)
{
if (rb_obj_is_kind_of(other, rb_cSet)) {
size_t set_size = RSET_SIZE(set);
size_t other_size = RSET_SIZE(other);
VALUE args[2];
args[1] = Qfalse;
VALUE iter_arg;
if (set_size < other_size) {
iter_arg = set;
args[0] = (VALUE)RSET_TABLE(other);
}
else {
iter_arg = other;
args[0] = (VALUE)RSET_TABLE(set);
}
set_iter(iter_arg, set_intersect_i, (st_data_t)args);
return args[1];
}
else if (rb_obj_is_kind_of(other, rb_mEnumerable)) {
return rb_funcall(other, id_any_p, 1, set);
}
else {
rb_raise(rb_eArgError, "value must be enumerable");
}
}
/*
* call-seq:
* disjoint?(set) -> true or false
*
* Returns true if the set and the given enumerable have no
* element in common. This method is the opposite of +intersect?+.
*
* Set[1, 2, 3].disjoint? Set[3, 4] #=> false
* Set[1, 2, 3].disjoint? Set[4, 5] #=> true
* Set[1, 2, 3].disjoint? [3, 4] #=> false
* Set[1, 2, 3].disjoint? 4..5 #=> true
*/
static VALUE
set_i_disjoint(VALUE set, VALUE other)
{
return RBOOL(!RTEST(set_i_intersect(set, other)));
}
/*
* call-seq:
* set <=> other -> -1, 0, 1, or nil
*
* Returns 0 if the set are equal, -1 / 1 if the set is a
* proper subset / superset of the given set, or or nil if
* they both have unique elements.
*/
static VALUE
set_i_compare(VALUE set, VALUE other)
{
if (rb_obj_is_kind_of(other, rb_cSet)) {
size_t set_size = RSET_SIZE(set);
size_t other_size = RSET_SIZE(other);
if (set_size < other_size) {
if (set_le(set, other) == Qtrue) {
return INT2NUM(-1);
}
}
else if (set_size > other_size) {
if (set_le(other, set) == Qtrue) {
return INT2NUM(1);
}
}
else if (set_le(set, other) == Qtrue) {
return INT2NUM(0);
}
}
return Qnil;
}
struct set_equal_data {
VALUE result;
VALUE set;
};
static int
set_eql_i(st_data_t item, st_data_t arg)
{
struct set_equal_data *data = (struct set_equal_data *)arg;
if (!set_lookup(RSET_TABLE(data->set), item)) {
data->result = Qfalse;
return ST_STOP;
}
return ST_CONTINUE;
}
static VALUE
set_recursive_eql(VALUE set, VALUE dt, int recur)
{
if (recur) return Qtrue;
struct set_equal_data *data = (struct set_equal_data*)dt;
data->result = Qtrue;
set_iter(set, set_eql_i, dt);
return data->result;
}
/*
* call-seq:
* set == other -> true or false
*
* Returns true if two sets are equal.
*/
static VALUE
set_i_eq(VALUE set, VALUE other)
{
if (!rb_obj_is_kind_of(other, rb_cSet)) return Qfalse;
if (set == other) return Qtrue;
set_table *stable = RSET_TABLE(set);
set_table *otable = RSET_TABLE(other);
size_t ssize = set_table_size(stable);
size_t osize = set_table_size(otable);
if (ssize != osize) return Qfalse;
if (ssize == 0 && osize == 0) return Qtrue;
if (stable->type != otable->type) return Qfalse;
struct set_equal_data data;
data.set = other;
return rb_exec_recursive_paired(set_recursive_eql, set, other, (VALUE)&data);
}
static int
set_hash_i(st_data_t item, st_data_t(arg))
{
st_index_t *hval = (st_index_t *)arg;
st_index_t ival = rb_hash(item);
*hval ^= rb_st_hash(&ival, sizeof(st_index_t), 0);
return ST_CONTINUE;
}
/*
* call-seq:
* hash -> integer
*
* Returns hash code for set.
*/
static VALUE
set_i_hash(VALUE set)
{
st_index_t size = RSET_SIZE(set);
st_index_t hval = rb_st_hash_start(size);
hval = rb_hash_uint(hval, (st_index_t)set_i_hash);
if (size) {
set_iter(set, set_hash_i, (VALUE)&hval);
}
hval = rb_st_hash_end(hval);
return ST2FIX(hval);
}
/*
* Document-class: Set
*
* Copyright (c) 2002-2024 Akinori MUSHA <[email protected]>
*
* Documentation by Akinori MUSHA and Gavin Sinclair.
*
* All rights reserved. You can redistribute and/or modify it under the same
* terms as Ruby.
*
* The Set class implements a collection of unordered values with no
* duplicates. It is a hybrid of Array's intuitive inter-operation
* facilities and Hash's fast lookup.
*
* Set is easy to use with Enumerable objects (implementing `each`).
* Most of the initializer methods and binary operators accept generic
* Enumerable objects besides sets and arrays. An Enumerable object
* can be converted to Set using the `to_set` method.
*
* Set uses a data structure similar to Hash for storage, except that
* it only has keys and no values.
*
* * Equality of elements is determined according to Object#eql? and
* Object#hash. Use Set#compare_by_identity to make a set compare
* its elements by their identity.
* * Set assumes that the identity of each element does not change
* while it is stored. Modifying an element of a set will render the
* set to an unreliable state.
* * When a string is to be stored, a frozen copy of the string is
* stored instead unless the original string is already frozen.
*
* == Comparison
*
* The comparison operators <tt><</tt>, <tt>></tt>, <tt><=</tt>, and
* <tt>>=</tt> are implemented as shorthand for the
* {proper_,}{subset?,superset?} methods. The <tt><=></tt>
* operator reflects this order, or returns +nil+ for sets that both
* have distinct elements (<tt>{x, y}</tt> vs. <tt>{x, z}</tt> for example).
*
* == Example
*
* s1 = Set[1, 2] #=> #<Set: {1, 2}>
* s2 = [1, 2].to_set #=> #<Set: {1, 2}>
* s1 == s2 #=> true
* s1.add("foo") #=> #<Set: {1, 2, "foo"}>
* s1.merge([2, 6]) #=> #<Set: {1, 2, "foo", 6}>
* s1.subset?(s2) #=> false
* s2.subset?(s1) #=> true
*
* == Contact
*
* - Akinori MUSHA <[email protected]> (current maintainer)
*
* == What's Here
*
* First, what's elsewhere. \Class \Set:
*
* - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
* - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here],
* which provides dozens of additional methods.
*
* In particular, class \Set does not have many methods of its own
* for fetching or for iterating.
* Instead, it relies on those in \Enumerable.
*
* Here, class \Set provides methods that are useful for:
*
* - {Creating an Array}[rdoc-ref:Array@Methods+for+Creating+an+Array]
* - {Creating a Set}[rdoc-ref:Array@Methods+for+Creating+a+Set]
* - {Set Operations}[rdoc-ref:Array@Methods+for+Set+Operations]
* - {Comparing}[rdoc-ref:Array@Methods+for+Comparing]
* - {Querying}[rdoc-ref:Array@Methods+for+Querying]
* - {Assigning}[rdoc-ref:Array@Methods+for+Assigning]
* - {Deleting}[rdoc-ref:Array@Methods+for+Deleting]
* - {Converting}[rdoc-ref:Array@Methods+for+Converting]
* - {Iterating}[rdoc-ref:Array@Methods+for+Iterating]
* - {And more....}[rdoc-ref:Array@Other+Methods]
*
* === Methods for Creating a \Set
*
* - ::[]:
* Returns a new set containing the given objects.
* - ::new:
* Returns a new set containing either the given objects
* (if no block given) or the return values from the called block
* (if a block given).
*
* === Methods for \Set Operations
*
* - #| (aliased as #union and #+):
* Returns a new set containing all elements from +self+
* and all elements from a given enumerable (no duplicates).
* - #& (aliased as #intersection):
* Returns a new set containing all elements common to +self+
* and a given enumerable.
* - #- (aliased as #difference):
* Returns a copy of +self+ with all elements
* in a given enumerable removed.
* - #^: Returns a new set containing all elements from +self+
* and a given enumerable except those common to both.
*
* === Methods for Comparing
*
* - #<=>: Returns -1, 0, or 1 as +self+ is less than, equal to,
* or greater than a given object.
* - #==: Returns whether +self+ and a given enumerable are equal,
* as determined by Object#eql?.
* - #compare_by_identity?:
* Returns whether the set considers only identity
* when comparing elements.
*
* === Methods for Querying
*
* - #length (aliased as #size):
* Returns the count of elements.
* - #empty?:
* Returns whether the set has no elements.
* - #include? (aliased as #member? and #===):
* Returns whether a given object is an element in the set.
* - #subset? (aliased as #<=):
* Returns whether a given object is a subset of the set.
* - #proper_subset? (aliased as #<):
* Returns whether a given enumerable is a proper subset of the set.
* - #superset? (aliased as #>=):
* Returns whether a given enumerable is a superset of the set.
* - #proper_superset? (aliased as #>):
* Returns whether a given enumerable is a proper superset of the set.
* - #disjoint?:
* Returns +true+ if the set and a given enumerable
* have no common elements, +false+ otherwise.
* - #intersect?:
* Returns +true+ if the set and a given enumerable:
* have any common elements, +false+ otherwise.
* - #compare_by_identity?:
* Returns whether the set considers only identity
* when comparing elements.
*
* === Methods for Assigning
*
* - #add (aliased as #<<):
* Adds a given object to the set; returns +self+.
* - #add?:
* If the given object is not an element in the set,
* adds it and returns +self+; otherwise, returns +nil+.
* - #merge:
* Merges the elements of each given enumerable object to the set; returns +self+.
* - #replace:
* Replaces the contents of the set with the contents
* of a given enumerable.
*
* === Methods for Deleting
*
* - #clear:
* Removes all elements in the set; returns +self+.
* - #delete:
* Removes a given object from the set; returns +self+.
* - #delete?:
* If the given object is an element in the set,
* removes it and returns +self+; otherwise, returns +nil+.
* - #subtract:
* Removes each given object from the set; returns +self+.
* - #delete_if - Removes elements specified by a given block.
* - #select! (aliased as #filter!):
* Removes elements not specified by a given block.
* - #keep_if:
* Removes elements not specified by a given block.
* - #reject!
* Removes elements specified by a given block.
*
* === Methods for Converting
*
* - #classify:
* Returns a hash that classifies the elements,
* as determined by the given block.
* - #collect! (aliased as #map!):
* Replaces each element with a block return-value.
* - #divide:
* Returns a hash that classifies the elements,
* as determined by the given block;
* differs from #classify in that the block may accept
* either one or two arguments.
* - #flatten:
* Returns a new set that is a recursive flattening of +self+.
* - #flatten!:
* Replaces each nested set in +self+ with the elements from that set.
* - #inspect (aliased as #to_s):
* Returns a string displaying the elements.
* - #join:
* Returns a string containing all elements, converted to strings
* as needed, and joined by the given record separator.
* - #to_a:
* Returns an array containing all set elements.
* - #to_set:
* Returns +self+ if given no arguments and no block;
* with a block given, returns a new set consisting of block
* return values.
*
* === Methods for Iterating
*
* - #each:
* Calls the block with each successive element; returns +self+.
*
* === Other Methods
*
* - #reset:
* Resets the internal state; useful if an object
* has been modified while an element in the set.
*
*/
void
Init_Set(void)
{
rb_cSet = rb_define_class("Set", rb_cObject);
rb_include_module(rb_cSet, rb_mEnumerable);
id_each_entry = rb_intern_const("each_entry");
id_any_p = rb_intern_const("any?");
id_new = rb_intern_const("new");
id_set_iter_lev = rb_make_internal_id();
rb_define_alloc_func(rb_cSet, set_s_alloc);
rb_define_singleton_method(rb_cSet, "[]", set_s_create, -1);
rb_define_method(rb_cSet, "initialize", set_i_initialize, -1);
rb_define_method(rb_cSet, "initialize_copy", set_i_initialize_copy, 1);
rb_define_method(rb_cSet, "&", set_i_intersection, 1);
rb_define_alias(rb_cSet, "intersection", "&");
rb_define_method(rb_cSet, "-", set_i_difference, 1);
rb_define_alias(rb_cSet, "difference", "-");
rb_define_method(rb_cSet, "^", set_i_xor, 1);
rb_define_method(rb_cSet, "|", set_i_union, 1);
rb_define_alias(rb_cSet, "+", "|");
rb_define_alias(rb_cSet, "union", "|");
rb_define_method(rb_cSet, "<=>", set_i_compare, 1);
rb_define_method(rb_cSet, "==", set_i_eq, 1);
rb_define_alias(rb_cSet, "eql?", "==");
rb_define_method(rb_cSet, "add", set_i_add, 1);
rb_define_alias(rb_cSet, "<<", "add");
rb_define_method(rb_cSet, "add?", set_i_add_p, 1);
rb_define_method(rb_cSet, "classify", set_i_classify, 0);
rb_define_method(rb_cSet, "clear", set_i_clear, 0);
rb_define_method(rb_cSet, "collect!", set_i_collect, 0);
rb_define_alias(rb_cSet, "map!", "collect!");
rb_define_method(rb_cSet, "compare_by_identity", set_i_compare_by_identity, 0);
rb_define_method(rb_cSet, "compare_by_identity?", set_i_compare_by_identity_p, 0);
rb_define_method(rb_cSet, "delete", set_i_delete, 1);
rb_define_method(rb_cSet, "delete?", set_i_delete_p, 1);
rb_define_method(rb_cSet, "delete_if", set_i_delete_if, 0);
rb_define_method(rb_cSet, "disjoint?", set_i_disjoint, 1);
rb_define_method(rb_cSet, "divide", set_i_divide, 0);
rb_define_method(rb_cSet, "each", set_i_each, 0);
rb_define_method(rb_cSet, "empty?", set_i_empty, 0);
rb_define_method(rb_cSet, "flatten", set_i_flatten, 0);
rb_define_method(rb_cSet, "flatten!", set_i_flatten_bang, 0);
rb_define_method(rb_cSet, "hash", set_i_hash, 0);
rb_define_method(rb_cSet, "include?", set_i_include, 1);
rb_define_alias(rb_cSet, "member?", "include?");
rb_define_alias(rb_cSet, "===", "include?");
rb_define_method(rb_cSet, "inspect", set_i_inspect, 0);
rb_define_alias(rb_cSet, "to_s", "inspect");
rb_define_method(rb_cSet, "intersect?", set_i_intersect, 1);
rb_define_method(rb_cSet, "join", set_i_join, -1);
rb_define_method(rb_cSet, "keep_if", set_i_keep_if, 0);
rb_define_method(rb_cSet, "merge", set_i_merge, -1);
rb_define_method(rb_cSet, "proper_subset?", set_i_proper_subset, 1);
rb_define_alias(rb_cSet, "<", "proper_subset?");
rb_define_method(rb_cSet, "proper_superset?", set_i_proper_superset, 1);
rb_define_alias(rb_cSet, ">", "proper_superset?");
rb_define_method(rb_cSet, "reject!", set_i_reject, 0);
rb_define_method(rb_cSet, "replace", set_i_replace, 1);
rb_define_method(rb_cSet, "reset", set_i_reset, 0);
rb_define_method(rb_cSet, "size", set_i_size, 0);
rb_define_alias(rb_cSet, "length", "size");
rb_define_method(rb_cSet, "select!", set_i_select, 0);
rb_define_alias(rb_cSet, "filter!", "select!");
rb_define_method(rb_cSet, "subset?", set_i_subset, 1);
rb_define_alias(rb_cSet, "<=", "subset?");
rb_define_method(rb_cSet, "subtract", set_i_subtract, 1);
rb_define_method(rb_cSet, "superset?", set_i_superset, 1);
rb_define_alias(rb_cSet, ">=", "superset?");
rb_define_method(rb_cSet, "to_a", set_i_to_a, 0);
rb_define_method(rb_cSet, "to_set", set_i_to_set, -1);
rb_provide("set.rb");
}
|