1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
# frozen_string_literal: true
# This test is going to use the RubyVM::InstructionSequence class to compile
# local tables and compare against them to ensure we have the same locals in the
# same order. This is important to guarantee that we compile indices correctly
# on CRuby (in terms of compatibility).
#
# There have also been changes made in other versions of Ruby, so we only want
# to test on the most recent versions.
return if !defined?(RubyVM::InstructionSequence) || RUBY_VERSION < "3.4.0"
# If we're on Ruby 3.4.0 and the default parser is Prism, then there is no point
# in comparing the locals because they will be the same.
return if RubyVM::InstructionSequence.compile("").to_a[4][:parser] == :prism
# In Ruby 3.4.0, the local table for method forwarding changed. But 3.4.0 can
# refer to the dev version, so while 3.4.0 still isn't released, we need to
# check if we have a high enough revision.
return if RubyVM::InstructionSequence.compile("def foo(...); end").to_a[13][2][2][10].length != 1
# Omit tests if running on a 32-bit machine because there is a bug with how
# Ruby is handling large ISeqs on 32-bit machines
return if RUBY_PLATFORM =~ /i686/
require_relative "test_helper"
module Prism
class LocalsTest < TestCase
except = [
# Skip this fixture because it has a different number of locals because
# CRuby is eliminating dead code.
"whitequark/ruby_bug_10653.txt"
]
Fixture.each(except: except) do |fixture|
define_method(fixture.test_name) { assert_locals(fixture) }
end
def setup
@previous_default_external = Encoding.default_external
ignore_warnings { Encoding.default_external = Encoding::UTF_8 }
end
def teardown
ignore_warnings { Encoding.default_external = @previous_default_external }
end
private
def assert_locals(fixture)
source = fixture.read
expected = cruby_locals(source)
actual = prism_locals(source)
assert_equal(expected, actual)
end
# A wrapper around a RubyVM::InstructionSequence that provides a more
# convenient interface for accessing parts of the iseq.
class ISeq
attr_reader :parts
def initialize(parts)
@parts = parts
end
def type
parts[0]
end
def local_table
parts[10]
end
def instructions
parts[13]
end
def each_child
instructions.each do |instruction|
# Only look at arrays. Other instructions are line numbers or
# tracepoint events.
next unless instruction.is_a?(Array)
instruction.each do |opnd|
# Only look at arrays. Other operands are literals.
next unless opnd.is_a?(Array)
# Only look at instruction sequences. Other operands are literals.
next unless opnd[0] == "YARVInstructionSequence/SimpleDataFormat"
yield ISeq.new(opnd)
end
end
end
end
# Used to hold the place of a local that will be in the local table but
# cannot be accessed directly from the source code. For example, the
# iteration variable in a for loop or the positional parameter on a method
# definition that is destructured.
AnonymousLocal = Object.new
# For the given source, compiles with CRuby and returns a list of all of the
# sets of local variables that were encountered.
def cruby_locals(source)
locals = [] #: Array[Array[Symbol | Integer]]
stack = [ISeq.new(ignore_warnings { RubyVM::InstructionSequence.compile(source) }.to_a)]
while (iseq = stack.pop)
names = [*iseq.local_table]
names.map!.with_index do |name, index|
# When an anonymous local variable is present in the iseq's local
# table, it is represented as the stack offset from the top.
# However, when these are dumped to binary and read back in, they
# are replaced with the symbol :#arg_rest. To consistently handle
# this, we replace them here with their index.
if name == :"#arg_rest"
names.length - index + 1
else
name
end
end
locals << names
iseq.each_child { |child| stack << child }
end
locals
end
# For the given source, parses with prism and returns a list of all of the
# sets of local variables that were encountered.
def prism_locals(source)
locals = [] #: Array[Array[Symbol | Integer]]
stack = [Prism.parse(source).value] #: Array[Prism::node]
while (node = stack.pop)
case node
when BlockNode, DefNode, LambdaNode
names = node.locals
params = nil
if node.is_a?(DefNode)
params = node.parameters
elsif node.parameters.is_a?(NumberedParametersNode)
# nothing
elsif node.parameters.is_a?(ItParametersNode)
names.unshift(AnonymousLocal)
else
params = node.parameters&.parameters
end
# prism places parameters in the same order that they appear in the
# source. CRuby places them in the order that they need to appear
# according to their own internal calling convention. We mimic that
# order here so that we can compare properly.
if params
sorted = [
*params.requireds.map do |required|
if required.is_a?(RequiredParameterNode)
required.name
else
AnonymousLocal
end
end,
*params.optionals.map(&:name),
*((params.rest.name || :*) if params.rest && !params.rest.is_a?(ImplicitRestNode)),
*params.posts.map do |post|
if post.is_a?(RequiredParameterNode)
post.name
else
AnonymousLocal
end
end,
*params.keywords.grep(RequiredKeywordParameterNode).map(&:name),
*params.keywords.grep(OptionalKeywordParameterNode).map(&:name),
]
sorted << AnonymousLocal if params.keywords.any?
if params.keyword_rest.is_a?(ForwardingParameterNode)
if sorted.length == 0
sorted.push(:"...")
else
sorted.push(:*, :**, :&, :"...")
end
elsif params.keyword_rest.is_a?(KeywordRestParameterNode)
sorted << (params.keyword_rest.name || :**)
end
# Recurse down the parameter tree to find any destructured
# parameters and add them after the other parameters.
param_stack = params.requireds.concat(params.posts).grep(MultiTargetNode).reverse
while (param = param_stack.pop)
case param
when MultiTargetNode
param_stack.concat(param.rights.reverse)
param_stack << param.rest if param.rest&.expression && !sorted.include?(param.rest.expression.name)
param_stack.concat(param.lefts.reverse)
when RequiredParameterNode
sorted << param.name
when SplatNode
sorted << param.expression.name
end
end
if params.block
sorted << (params.block.name || :&)
end
names = sorted.concat(names - sorted)
end
names.map!.with_index do |name, index|
if name == AnonymousLocal
names.length - index + 1
else
name
end
end
locals << names
when ClassNode, ModuleNode, ProgramNode, SingletonClassNode
locals << node.locals
when ForNode
locals << [2]
when PostExecutionNode
locals.push([], [])
when InterpolatedRegularExpressionNode
locals << [] if node.once?
end
stack.concat(node.compact_child_nodes)
end
locals
end
end
end
|