1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
#ifndef UJIT_ASM_H
#define UJIT_ASM_H 1
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
// Maximum number of labels to link
#define MAX_LABELS 32
// Maximum number of label references
#define MAX_LABEL_REFS 32
// Reference to an ASM label
typedef struct LabelRef
{
// Position in the code block where the label reference exists
size_t pos;
// Label which this refers to
size_t label_idx;
} labelref_t;
// Block of executable memory into which instructions can be written
typedef struct CodeBlock
{
// Memory block
uint8_t* mem_block;
// Memory block size
size_t mem_size;
/// Current writing position
size_t write_pos;
// Table of registered label addresses
size_t label_addrs[MAX_LABELS];
// Table of registered label names
// Note that these should be constant strings only
const char* label_names[MAX_LABELS];
// References to labels
labelref_t label_refs[MAX_LABEL_REFS];
// Number of labels registeered
size_t num_labels;
// Number of references to labels
size_t num_refs;
// TODO: system for disassembly/comment strings, indexed by position
// Flag to enable or disable comments
bool has_asm;
} codeblock_t;
enum OpndType
{
OPND_NONE,
OPND_REG,
OPND_IMM,
OPND_MEM,
//OPND_IPREL
};
enum RegType
{
REG_GP,
REG_FP,
REG_XMM,
REG_IP
};
typedef struct X86Reg
{
// Register type
uint8_t reg_type;
// Register index number
uint8_t reg_no;
} x86reg_t;
typedef struct X86Mem
{
/// Base register number
uint8_t base_reg_no;
/// Index register number
uint8_t idx_reg_no;
/// SIB scale exponent value (power of two, two bits)
uint8_t scale_exp;
/// Has index register flag
bool has_idx;
// TODO: should this be here, or should we have an extra operand type?
/// IP-relative addressing flag
bool is_iprel;
/// Constant displacement from the base, not scaled
int32_t disp;
} x86mem_t;
typedef struct X86Opnd
{
// Operand type
uint8_t type;
// Size in bits
uint16_t num_bits;
union
{
// Register operand
x86reg_t reg;
// Memory operand
x86mem_t mem;
// Signed immediate value
int64_t imm;
// Unsigned immediate value
uint64_t unsigImm;
};
} x86opnd_t;
// Dummy none/null operand
const x86opnd_t NO_OPND;
// 64-bit GP registers
const x86opnd_t RAX;
const x86opnd_t RCX;
const x86opnd_t RDX;
const x86opnd_t RBX;
const x86opnd_t RBP;
const x86opnd_t RSP;
const x86opnd_t RSI;
const x86opnd_t RDI;
const x86opnd_t R8;
const x86opnd_t R9;
const x86opnd_t R10;
const x86opnd_t R11;
const x86opnd_t R12;
const x86opnd_t R13;
const x86opnd_t R14;
const x86opnd_t R15;
// 32-bit GP registers
const x86opnd_t EAX;
const x86opnd_t ECX;
const x86opnd_t EDX;
const x86opnd_t EBX;
const x86opnd_t EBP;
const x86opnd_t ESP;
const x86opnd_t ESI;
const x86opnd_t EDI;
const x86opnd_t R8D;
const x86opnd_t R9D;
const x86opnd_t R10D;
const x86opnd_t R11D;
const x86opnd_t R12D;
const x86opnd_t R13D;
const x86opnd_t R14D;
const x86opnd_t R15D;
// Memory operand with base register and displacement/offset
x86opnd_t mem_opnd(size_t num_bits, x86opnd_t base_reg, int32_t disp);
// Immediate number operand
x86opnd_t imm_opnd(int64_t val);
void cb_init(codeblock_t* cb, size_t mem_size);
void cb_set_pos(codeblock_t* cb, size_t pos);
uint8_t* cb_get_ptr(codeblock_t* cb, size_t index);
void cb_write_byte(codeblock_t* cb, uint8_t byte);
void cb_write_bytes(codeblock_t* cb, size_t num_bytes, ...);
void cb_write_int(codeblock_t* cb, uint64_t val, size_t num_bits);
size_t cb_new_label(codeblock_t* cb, const char* name);
void cb_write_label(codeblock_t* cb, size_t label_idx);
void cb_label_ref(codeblock_t* cb, size_t label_idx);
void cb_link_labels(codeblock_t* cb);
// Ruby instruction prologue and epilogue functions
void cb_write_prologue(codeblock_t* cb);
void cb_write_epilogue(codeblock_t* cb);
// Encode individual instructions into a code block
void add(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);
void call_label(codeblock_t* cb, size_t label_idx);
void call(codeblock_t* cb, x86opnd_t opnd);
void ja(codeblock_t* cb, size_t label_idx);
void jae(codeblock_t* cb, size_t label_idx);
void jb(codeblock_t* cb, size_t label_idx);
void jbe(codeblock_t* cb, size_t label_idx);
void jc(codeblock_t* cb, size_t label_idx);
void je(codeblock_t* cb, size_t label_idx);
void jg(codeblock_t* cb, size_t label_idx);
void jge(codeblock_t* cb, size_t label_idx);
void jl(codeblock_t* cb, size_t label_idx);
void jle(codeblock_t* cb, size_t label_idx);
void jna(codeblock_t* cb, size_t label_idx);
void jnae(codeblock_t* cb, size_t label_idx);
void jnb(codeblock_t* cb, size_t label_idx);
void jnbe(codeblock_t* cb, size_t label_idx);
void jnc(codeblock_t* cb, size_t label_idx);
void jne(codeblock_t* cb, size_t label_idx);
void jng(codeblock_t* cb, size_t label_idx);
void jnge(codeblock_t* cb, size_t label_idx);
void jnl(codeblock_t* cb, size_t label_idx);
void jnle(codeblock_t* cb, size_t label_idx);
void jno(codeblock_t* cb, size_t label_idx);
void jnp(codeblock_t* cb, size_t label_idx);
void jns(codeblock_t* cb, size_t label_idx);
void jnz(codeblock_t* cb, size_t label_idx);
void jo(codeblock_t* cb, size_t label_idx);
void jp(codeblock_t* cb, size_t label_idx);
void jpe(codeblock_t* cb, size_t label_idx);
void jpo(codeblock_t* cb, size_t label_idx);
void js(codeblock_t* cb, size_t label_idx);
void jz(codeblock_t* cb, size_t label_idx);
void jmp(codeblock_t* cb, size_t label_idx);
void jmp_rm(codeblock_t* cb, x86opnd_t opnd);
void lea(codeblock_t* cb, x86opnd_t dst, x86opnd_t src);
void mov(codeblock_t* cb, x86opnd_t dst, x86opnd_t src);
void nop(codeblock_t* cb, size_t length);
void push(codeblock_t* cb, x86opnd_t reg);
void pop(codeblock_t* cb, x86opnd_t reg);
void ret(codeblock_t* cb);
void sal(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);
void sar(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);
void shl(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);
void shr(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);
void sub(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);
#endif
|