Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
214 changes: 153 additions & 61 deletions ggml/src/ggml-cann/aclnn_ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2251,12 +2251,12 @@ static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
int sections[4],
bool mrope_used,
bool is_imrope,
bool indep_sects) {
ggml_tensor * src0 = dst->src[0]; // input
bool indep_sects,
int64_t rope_dims) {
ggml_tensor * src1 = dst->src[1]; // position
ggml_tensor * src2 = dst->src[2]; // freq_factors

int64_t theta_scale_length = src0->ne[0] / 2;
int64_t theta_scale_length = rope_dims / 2;
int64_t position_length = dst->ne[2];

// TODO: check theta_scale_length and position_length.
Expand Down Expand Up @@ -2331,18 +2331,17 @@ static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
ACL_CHECK(aclrtMemcpyAsync(ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float),
ctx.rope_cache.theta_scale_exp_host, theta_scale_length * sizeof(float),
ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream()));

acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, 1);
}
acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, 1);

// Step1.2: prepare rope_yarn_ramp, if this part updated, should update theta_scale_tensor.
// TODO: acl_yarn_ramp_tensor use rope cache.
bool yarn_ramp_tensor_updated = false;
ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool());
acl_tensor_ptr acl_yarn_ramp_tensor;
if (ext_factor != 0 &&
// TODO: check more parameter.
(ctx.rope_cache.theta_scale_length != theta_scale_length || ctx.rope_cache.freq_scale != freq_scale)) {
if (ext_factor != 0 && (theta_scale_updated || ctx.rope_cache.theta_scale_length != theta_scale_length ||
ctx.rope_cache.freq_scale != freq_scale)) {
yarn_ramp_tensor_updated = true;

// -rope_yarn_ramp
Expand Down Expand Up @@ -2590,7 +2589,7 @@ static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
aclnn_muls(ctx, acl_cos_tensor.get(), attn_factor, nullptr, true);
}

int64_t sin_reshape_ne[4] = { src0->ne[0], 1, dst->ne[2], 1 };
int64_t sin_reshape_ne[4] = { rope_dims, 1, dst->ne[2], 1 };
size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
Expand Down Expand Up @@ -2645,7 +2644,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {

// param
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
int sections[4];
int sections[4];
// const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
Expand All @@ -2654,44 +2653,60 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {

GGML_TENSOR_UNARY_OP_LOCALS

memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int) * 4);

// TODO: n_dims <= ne0
GGML_ASSERT(n_dims == ne0);
GGML_ASSERT(n_dims % 2 == 0);
GGML_ASSERT(n_dims <= ne00);

const float theta_scale = powf(freq_base, -2.0f / n_dims);

float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);

bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope
const bool mrope_used = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, note: also true for vision (24 & 8 == true) and for imrope
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope
// mrope_used means the GGML_ROPE_TYPE_MROPE bit is set.
// Note: this bit is also set for imrope and some vision modes,
// so mrope_used does NOT exclusively indicate pure mrope.
const bool mrope_used = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;

if (mrope_used) {
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
}

if (is_vision) {
GGML_ASSERT(n_dims == ne0/2);
GGML_ASSERT(n_dims == ne0 / 2);
}

if (is_imrope || mrope_used) {
is_neox = true;
}

int64_t rope_dims = n_dims;

//Our current RotaryPositionEmbedding does not support the VISION mode,
//but essentially it only modifies theta_base in mrope,
//then repeats it at the end in the same way as is_neox.
//In fact, RoPE is still applied across all dimensions.
if (is_vision) {
rope_dims = src0->ne[0];
}
int64_t tail_dims = ne00 - rope_dims;
bool has_tail = tail_dims > 0;

// init ctx.rope_cos/rope_sin cache
aclnn_rope_cache_init(ctx, dst, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox, sections, mrope_used, is_imrope, is_vision);
aclnn_rope_cache_init(ctx, dst, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox, sections,
mrope_used, is_imrope, is_vision, rope_dims);

int64_t sin_reshape_ne[4] = { ne00, 1, ne02, 1 };
// Cache is generated with ne00 dimensions, so we use ne00 for reshape
int64_t sin_reshape_ne[4] = { rope_dims, 1, ne02, 1 };
size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
Expand All @@ -2704,7 +2719,6 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {

acl_tensor_ptr acl_src = ggml_cann_create_tensor(src0);
acl_tensor_ptr acl_dst = ggml_cann_create_tensor(dst);

#ifdef ASCEND_310P
// Special ROPE operation for 310P

Expand Down Expand Up @@ -2844,46 +2858,124 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
}
return;
#endif

int64_t acl_mode = is_neox ? 0 : 1;

switch (src0->type) {
case GGML_TYPE_F32:
{
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src.get(), acl_cos_reshape_tensor.get(),
acl_sin_reshape_tensor.get(), acl_mode, acl_dst.get());
break;
}
case GGML_TYPE_F16:
{
ggml_cann_pool_alloc src_trans_allocator(ctx.pool(), ggml_nelements(src0) * sizeof(float));
void * src_trans_buffer = src_trans_allocator.get();
ggml_cann_pool_alloc dst_trans_allocator(ctx.pool(), ggml_nelements(dst) * sizeof(float));
void * dst_trans_buffer = dst_trans_allocator.get();
// Pre-define head and tail dimensions for reuse
int64_t head_ne[GGML_MAX_DIMS] = { rope_dims, ne01, ne02, ne03 };
int64_t tail_ne[GGML_MAX_DIMS] = { tail_dims, ne01, ne02, ne03 };

// Step 1: Prepare trans tensors for F16 type conversion to F32 if needed
bool src_dst_need_trans = false;
ggml_cann_pool_alloc src_trans_allocator(ctx.pool());
ggml_cann_pool_alloc dst_trans_allocator(ctx.pool());
acl_tensor_ptr acl_src_trans_tensor;
acl_tensor_ptr acl_dst_trans_tensor;
void * src_trans_buffer = nullptr;
void * dst_trans_buffer = nullptr;
size_t src_dst_trans_nb[GGML_MAX_DIMS];
if (src0->type == GGML_TYPE_F16) {
src_dst_need_trans = true;
src_trans_buffer = src_trans_allocator.alloc(ggml_nelements(src0) * sizeof(float));
dst_trans_buffer = dst_trans_allocator.alloc(ggml_nelements(dst) * sizeof(float));

src_dst_trans_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_dst_trans_nb[i] = src_dst_trans_nb[i - 1] * src0->ne[i - 1];
}
acl_src_trans_tensor = ggml_cann_create_tensor(src_trans_buffer, ACL_FLOAT, sizeof(float), src0->ne,
src_dst_trans_nb, GGML_MAX_DIMS);
acl_dst_trans_tensor = ggml_cann_create_tensor(dst_trans_buffer, ACL_FLOAT, sizeof(float), dst->ne,
src_dst_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src.get(), acl_src_trans_tensor.get(), ACL_FLOAT);
}

// Step 2: Prepare head tensors for tail splitting if needed
acl_tensor_ptr acl_src_head;
acl_tensor_ptr acl_dst_head;
if (has_tail) {
// Create head views for RotaryPositionEmbedding (only first rope_dims dimensions)
// RotaryPositionEmbedding requires contiguous dst tensor, so we use a temporary buffer
if (src_dst_need_trans) {
// Use F32 trans tensor strides
acl_src_head = ggml_cann_create_tensor((char *) src_trans_buffer, ACL_FLOAT, sizeof(float), head_ne,
src_dst_trans_nb, GGML_MAX_DIMS);
} else {
// Use original F32 tensor strides
acl_src_head = ggml_cann_create_tensor((char *) src0->data, ACL_FLOAT, sizeof(float), head_ne, src0->nb,
GGML_MAX_DIMS);
}

size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
int64_t head_elements = rope_dims * ne01 * ne02 * ne03;
ggml_cann_pool_alloc dst_head_contiguous_allocator(ctx.pool(), head_elements * sizeof(float));
void * dst_head_contiguous_buffer = dst_head_contiguous_allocator.get();

acl_tensor_ptr acl_src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ACL_FLOAT, sizeof(float), src0->ne, src_trans_nb, GGML_MAX_DIMS);
acl_tensor_ptr acl_dst_trans_tensor = ggml_cann_create_tensor(
dst_trans_buffer, ACL_FLOAT, sizeof(float), dst->ne, src_trans_nb, GGML_MAX_DIMS);
size_t head_contiguous_nb[GGML_MAX_DIMS];
head_contiguous_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
head_contiguous_nb[i] = head_contiguous_nb[i - 1] * head_ne[i - 1];
}
acl_dst_head = ggml_cann_create_tensor(dst_head_contiguous_buffer, ACL_FLOAT, sizeof(float), head_ne,
head_contiguous_nb, GGML_MAX_DIMS);
}

aclnn_cast(ctx, acl_src.get(), acl_src_trans_tensor.get(), ACL_FLOAT);
// Step 3: Execute RotaryPositionEmbedding
if (has_tail) {
// Rotate only the head portion (first rope_dims dimensions)
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src_head.get(), acl_cos_reshape_tensor.get(),
acl_sin_reshape_tensor.get(), acl_mode, acl_dst_head.get());

GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src_trans_tensor.get(),
acl_cos_reshape_tensor.get(), acl_sin_reshape_tensor.get(), acl_mode,
acl_dst_trans_tensor.get());
// Copy head result from contiguous buffer back to destination tensor
if (src_dst_need_trans) {
acl_tensor_ptr acl_dst_head_target = ggml_cann_create_tensor(
(char *) dst_trans_buffer, ACL_FLOAT, sizeof(float), head_ne, src_dst_trans_nb, GGML_MAX_DIMS);
cann_copy(ctx, acl_dst_head.get(), acl_dst_head_target.get());
} else {
acl_tensor_ptr acl_dst_head_target =
ggml_cann_create_tensor((char *) dst->data, ACL_FLOAT, sizeof(float), head_ne, dst->nb, GGML_MAX_DIMS);
cann_copy(ctx, acl_dst_head.get(), acl_dst_head_target.get());
}
} else if (src_dst_need_trans) {
// Rotate full tensor (no tail), using trans tensors
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src_trans_tensor.get(), acl_cos_reshape_tensor.get(),
acl_sin_reshape_tensor.get(), acl_mode, acl_dst_trans_tensor.get());
} else {
// Rotate full tensor (no tail), using original tensors
GGML_CANN_CALL_ACLNN_OP(ctx, RotaryPositionEmbedding, acl_src.get(), acl_cos_reshape_tensor.get(),
acl_sin_reshape_tensor.get(), acl_mode, acl_dst.get());
}

// Step 4: Copy unrotated tail portion from source to destination
if (has_tail) {
size_t src_tail_offset;
size_t dst_tail_offset;

auto copy_tail_device = [&](void * src_ptr, void * dst_ptr, aclDataType dtype, size_t elem_size,
size_t * nb_src_arr, size_t * nb_dst_arr) {
acl_tensor_ptr acl_src_tail =
ggml_cann_create_tensor(src_ptr, dtype, elem_size, tail_ne, nb_src_arr, GGML_MAX_DIMS);
acl_tensor_ptr acl_dst_tail =
ggml_cann_create_tensor(dst_ptr, dtype, elem_size, tail_ne, nb_dst_arr, GGML_MAX_DIMS);
cann_copy(ctx, acl_src_tail.get(), acl_dst_tail.get());
};

if (src_dst_need_trans) {
// Use F32 trans tensor strides and offsets
src_tail_offset = rope_dims * src_dst_trans_nb[0];
dst_tail_offset = rope_dims * src_dst_trans_nb[0];
copy_tail_device((char *) src_trans_buffer + src_tail_offset, (char *) dst_trans_buffer + dst_tail_offset,
ACL_FLOAT, sizeof(float), src_dst_trans_nb, src_dst_trans_nb);
} else {
// Use original tensor strides and offsets
src_tail_offset = rope_dims * nb00;
dst_tail_offset = rope_dims * nb0;
copy_tail_device((char *) src0->data + src_tail_offset, (char *) dst->data + dst_tail_offset,
ggml_cann_type_mapping(dst->type), ggml_element_size(dst), src0->nb, dst->nb);
}
}

aclnn_cast(ctx, acl_dst_trans_tensor.get(), acl_dst.get(), ACL_FLOAT16);
break;
}
default:
GGML_ABORT("Unsupported tensor type for GGML_OP_ROPE");
break;
// Step 5: Cast back to F16 if needed
if (src_dst_need_trans) {
aclnn_cast(ctx, acl_dst_trans_tensor.get(), acl_dst.get(), ACL_FLOAT16);
}
}

Expand Down
4 changes: 2 additions & 2 deletions ggml/src/ggml-cann/common.h
Original file line number Diff line number Diff line change
Expand Up @@ -315,7 +315,7 @@ struct ggml_cann_rope_cache {
if (theta_scale_exp_host) {
free(theta_scale_exp_host);
}
if(position_select_index_host) {
if (position_select_index_host) {
free(position_select_index_host);
}
}
Expand All @@ -340,7 +340,7 @@ struct ggml_cann_rope_cache {

void set(int64_t theta_scale_length,
int64_t position_length,
float ext_factor,
float ext_factor,
float theta_scale,
float freq_scale,
float attn_factor,
Expand Down
14 changes: 6 additions & 8 deletions ggml/src/ggml-cann/ggml-cann.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2308,7 +2308,7 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,

bool cann_graph_update_required = false;
#ifdef USE_ACL_GRAPH
bool use_cann_graph = true;
bool use_cann_graph = true;

static bool prefill_use_graph = parse_bool(get_env("GGML_CANN_PREFILL_USE_GRAPH").value_or(""));
if (!prefill_use_graph) {
Expand Down Expand Up @@ -2338,7 +2338,7 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,
}
}
#else
bool use_cann_graph = false;
bool use_cann_graph = false;
#endif // USE_ACL_GRAPH
evaluate_and_capture_cann_graph(cann_ctx, cgraph, use_cann_graph, cann_graph_update_required);

Expand Down Expand Up @@ -2474,16 +2474,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
}
case GGML_OP_ROPE:
{
// TODO: with ops-test v == 1
// TODO: n_dims <= ne0
if (op->src[0]->ne[0] != op->op_params[1]) {
return false;
}

if (op->src[0]->ne[0] > 896) {
return false;
}
#ifdef ASCEND_310P
// TODO: Support rope_dim < ne00(dim)
if (op->src[0]->ne[0] != op->op_params[1]) {
return false;
}
if (!ggml_is_contiguous(op->src[0])) {
return false;
}
Expand Down