A Retrieval-Augmented Generation (RAG) application that leverages AI for intelligent document processing. Built with FastAPI backend, Streamlit frontend, LlamaIndex & Gemini for AI, and Qdrant for vector storage. Supports PDFs document uploads with efficient data ingestion pipelines.
- Upload PDFs documents
- AI-powered information retrieval
- Store and query vectors efficiently using Qdrant
- Dockerized setup for easy deployment
- Backend: FastAPI
- Frontend: Streamlit
- AI / RAG: LlamaIndex, Gemini
- Vector DB: Qdrant
- Containerization: Docker
git clone https://github.com/far-hana5/RAG-Apppython -m venv env
source env/bin/activate
pip install -r requirements.txt
