To appear in AISTATS'23.
A short example on how to run simulations to evaluate our confidence intervals vs MLE as implemented by the glm() function in R.
source("simulations.R")
N = 1e4
p = 100
init_control = default_init(p)
init_control$gamma.method = "ipower"
out = parallel_sim(p, N, nreps=100, model="gaussian", sigma_x="id", init_control=init_control)
Output contains element-wise coverage, average coverage, and average interval length for our method and MLE.
pcontrols the dimension.Ncontrols the number of samples.nrepscontrols number of separate confidence intervals to generate, with newly generated data for each confidence interval.- Set
modelto {gaussian,binomial, orpoisson}. - Set covariance matrix
sigma_xto values {id,equicor,toeplitz,ill_cond}. - To choose gamma selection method, set
init_control$gamma.methodto one of values {heuristic,bound,lmin,ipower}.