A comprehensive job search management application with:
- Resume management
- Interview question bank
- Job application tracking
- Document upload and semantic search
- Google Doc Integration
Neon.tech (serverless PostgreSQL) + pgvector is used as the single source of truth for all structured data and semantic search.
- docs/ARCHITECTURE.md - Complete architecture overview
- docs/DATABASE_SCHEMA.md - Detailed database schema documentation
- docs/NEON_MIGRATION_PLAN.md - Migration guide for Neon.tech (serverless PostgreSQL)
- Neon.tech account (free tier available) - Sign up
- Python 3.10+
- Google API Key for embeddings
# Create virtual environment
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Set up Neon.tech database (see docs/PGVECTOR_SETUP.md)
# 1. Sign up at https://neon.tech/
# 2. Create a new project and database
# 3. Get your connection string from the dashboard
# 4. Set NEON_DATABASE_URL environment variable (or use Streamlit secrets):
export NEON_DATABASE_URL="postgresql://username:[email protected]:5432/chat_pgvector?sslmode=require"
# Run migrations (using Neon connection string)
psql "$NEON_DATABASE_URL" -f storage/migrations/001_create_vector_tables.sql
psql "$NEON_DATABASE_URL" -f storage/migrations/002_add_jsonb_indexes.sql
# Start the application
streamlit run app.pyFor detailed setup instructions, see docs/PGVECTOR_SETUP.md.
web framework
PostgreSQL + pgvector (vector similarity search)
embedding framework, models: "models/gemini-embedding-001"
Connect LLMs for Retrieval-Augmented Generation (RAG), memory, chaining and agent-based reasoning.
documents import
audio transcription
video processing
Serverless PostgreSQL database for all structured data and vector storage (managed, auto-scaling)