VibeThinker-1.5B-f32-GGUF

VibeThinker-1.5B is a 1.5‑billion‑parameter dense language model from WeiboAI, fine‑tuned from Qwen2.5-Math-1.5B and purpose‑built for competitive math and algorithmic coding problems, where it delivers frontier‑level reasoning despite its small size. Trained with the “Spectrum‑to‑Signal Principle” framework that first maximizes solution diversity in supervised fine‑tuning and then reinforces correct reasoning paths via reinforcement learning, it achieves scores of 80.3, 74.4, and 50.4 on AIME24, AIME25, and HMMT25 respectively—surpassing the much larger DeepSeek R1—and reaches 55.9/51.1 on LiveCodeBench v5/v6, rivaling or beating larger models like Magistral Medium. The model is fully open source under the MIT license, trained with a reported post‑training cost of about $7,800, and is recommended for use specifically on math and coding tasks with long output lengths (up to around 40k tokens) using moderate sampling temperatures.

Model Files

VibeThinker-1.5B [GGUF]

File Name Quant Type File Size
VibeThinker-1.5B.BF16.gguf BF16 3.56 GB
VibeThinker-1.5B.F32.gguf F32 7.11 GB
VibeThinker-1.5B.f16.gguf F16 3.56 GB
VibeThinker-1.5B.IQ4_XS.gguf IQ4_XS 1.03 GB
VibeThinker-1.5B.Q2_K.gguf Q2_K 753 MB
VibeThinker-1.5B.Q3_K_L.gguf Q3_K_L 980 MB
VibeThinker-1.5B.Q3_K_M.gguf Q3_K_M 924 MB
VibeThinker-1.5B.Q3_K_S.gguf Q3_K_S 861 MB
VibeThinker-1.5B.Q4_K_M.gguf Q4_K_M 1.12 GB
VibeThinker-1.5B.Q4_K_S.gguf Q4_K_S 1.07 GB
VibeThinker-1.5B.Q5_K_M.gguf Q5_K_M 1.29 GB
VibeThinker-1.5B.Q5_K_S.gguf Q5_K_S 1.26 GB
VibeThinker-1.5B.Q6_K.gguf Q6_K 1.46 GB
VibeThinker-1.5B.Q8_0.gguf Q8_0 1.89 GB
VibeThinker-1.5B.i1-IQ1_M.gguf i1-IQ1_M 541 MB
VibeThinker-1.5B.i1-IQ1_S.gguf i1-IQ1_S 513 MB
VibeThinker-1.5B.i1-IQ2_M.gguf i1-IQ2_M 701 MB
VibeThinker-1.5B.i1-IQ2_S.gguf i1-IQ2_S 664 MB
VibeThinker-1.5B.i1-IQ2_XS.gguf i1-IQ2_XS 627 MB
VibeThinker-1.5B.i1-IQ2_XXS.gguf i1-IQ2_XXS 588 MB
VibeThinker-1.5B.i1-IQ3_M.gguf i1-IQ3_M 877 MB
VibeThinker-1.5B.i1-IQ3_S.gguf i1-IQ3_S 863 MB
VibeThinker-1.5B.i1-IQ3_XS.gguf i1-IQ3_XS 832 MB
VibeThinker-1.5B.i1-IQ3_XXS.gguf i1-IQ3_XXS 769 MB
VibeThinker-1.5B.i1-IQ4_NL.gguf i1-IQ4_NL 1.07 GB
VibeThinker-1.5B.i1-IQ4_XS.gguf i1-IQ4_XS 1.02 GB
VibeThinker-1.5B.i1-Q2_K.gguf i1-Q2_K 753 MB
VibeThinker-1.5B.i1-Q2_K_S.gguf i1-Q2_K_S 717 MB
VibeThinker-1.5B.i1-Q3_K_L.gguf i1-Q3_K_L 980 MB
VibeThinker-1.5B.i1-Q3_K_M.gguf i1-Q3_K_M 924 MB
VibeThinker-1.5B.i1-Q3_K_S.gguf i1-Q3_K_S 861 MB
VibeThinker-1.5B.i1-Q4_0.gguf i1-Q4_0 1.07 GB
VibeThinker-1.5B.i1-Q4_1.gguf i1-Q4_1 1.16 GB
VibeThinker-1.5B.i1-Q4_K_M.gguf i1-Q4_K_M 1.12 GB
VibeThinker-1.5B.i1-Q4_K_S.gguf i1-Q4_K_S 1.07 GB
VibeThinker-1.5B.i1-Q5_K_M.gguf i1-Q5_K_M 1.29 GB
VibeThinker-1.5B.i1-Q5_K_S.gguf i1-Q5_K_S 1.26 GB
VibeThinker-1.5B.i1-Q6_K.gguf i1-Q6_K 1.46 GB
VibeThinker-1.5B.imatrix.gguf imatrix 2.07 MB

Quants Usage

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

Downloads last month
2,745
GGUF
Model size
2B params
Architecture
qwen2
Hardware compatibility
Log In to view the estimation

1-bit

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

32-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for prithivMLmods/VibeThinker-1.5B-f32-GGUF

Base model

Qwen/Qwen2.5-1.5B
Quantized
(24)
this model