Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. International Journal of Computer Vision
  3. Article

On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows

  • Open access
  • Published: 23 April 2009
  • Volume 84, pages 288–307, (2009)
  • Cite this article

You have full access to this open access article

Download PDF
View saved research
International Journal of Computer Vision Aims and scope Submit manuscript
On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows
Download PDF
  • Antonin Chambolle1 &
  • Jérôme Darbon2 
  • 2444 Accesses

  • 122 Citations

  • Explore all metrics

Abstract

In a recent paper Boykov et al. (LNCS, Vol. 3953, pp. 409–422, 2006) propose an approach for computing curve and surface evolution using a variational approach and the geo-cuts method of Boykov and Kolmogorov (International conference on computer vision, pp. 26–33, 2003). We recall in this paper how this is related to well-known approaches for mean curvature motion, introduced by Almgren et al. (SIAM Journal on Control and Optimization 31(2):387–438, 1993) and Luckhaus and Sturzenhecker (Calculus of Variations and Partial Differential Equations 3(2):253–271, 1995), and show how the corresponding problems can be solved with sub-pixel accuracy using Parametric Maximum Flow techniques. This provides interesting algorithms for computing crystalline curvature motion, possibly with a forcing term.

Article PDF

Download to read the full article text

Similar content being viewed by others

A linear formulation for disk conformal parameterization of simply-connected open surfaces

Article 20 April 2017

On Geodesic Curvature Flow with Level Set Formulation Over Triangulated Surfaces

Article 23 August 2016

On Surface Area and Length Preserving Flows of Closed Curves on a Given Surface

Chapter © 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Computational Geometry
  • Continuous Optimization
  • Differential Geometry
  • Image Processing
  • Membrane curvature
  • Calculus of Variations and Optimization

References

  • Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows. Theory, algorithms, and applications. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Allard, W. K. (2007). Total variation regularization for image denoising, I. Geometric theory. SIAM Journal on Mathematical Analysis, 39(4), 1150–1190.

    Article  MATH  MathSciNet  Google Scholar 

  • Almgren, R. (1993). Variational algorithms and pattern formation in dendritic solidification. Journal of Computational Physics, 106(2), 337–354.

    MATH  MathSciNet  Google Scholar 

  • Almgren, F., Taylor, J. E., & Wang, L.-H. (1993). Curvature-driven flows: a variational approach. SIAM Journal on Control and Optimization, 31(2), 387–438.

    Article  MATH  MathSciNet  Google Scholar 

  • Alter, F., Caselles, V., & Chambolle, A. (2005). A characterization of convex calibrable sets in ℝN. Mathematische Annalen, 332(2), 329–366.

    Article  MATH  MathSciNet  Google Scholar 

  • Babenko, M. A., Derryberry, J., Goldberg, A. V., Tarjan, R. E., & Zhou, Y. (2007). Experimental evaluation of parametric max-flow algorithms. In Lecture notes in computer science (Vol. 4252, pp. 256–269). Berlin: Springer.

    Google Scholar 

  • Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

    Article  MathSciNet  Google Scholar 

  • Bellettini, G., & Paolini, M. (1996). Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Mathematical Journal, 25(3), 537–566.

    MATH  MathSciNet  Google Scholar 

  • Bellettini, G., Novaga, M., & Paolini, M. (1999). Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces and Free Boundaries, 1(1), 39–55.

    MATH  MathSciNet  Google Scholar 

  • Bellettini, G., Caselles, V., Chambolle, A., & Novaga, M. (2006). Crystalline mean curvature flow of convex sets. Archive for Rational Mechanics and Analysis, 179(1), 109–152.

    Article  MATH  MathSciNet  Google Scholar 

  • Boros, E., & Hammer, P. L. (2002). Pseudo-boolean optimization. Discrete Applied Mathematics, 123(1–3), 155–225.

    MATH  MathSciNet  Google Scholar 

  • Bouchitté, G. (1998). Recent convexity arguments in the calculus of variations. In Lecture notes from the 3rd int. summer school on the calculus of variations, Pisa.

  • Boykov, Y., & Kolmogorov, V. (2003). Computing geodesics and minimal surfaces via graph cuts. In International conference on computer vision, pp. 26–33.

  • Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1124–1137.

    Article  Google Scholar 

  • Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239.

    Article  Google Scholar 

  • Boykov, Y., Kolmogorov, V., Cremers, D., & Delong, A. (2006). An integral solution to surface evolution PDEs via Geo-Cuts. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Lecture notes in computer science : Vol. 3953. European conference on computer vision (ECCV) (pp. 409–422). Graz, Austria, May 2006. Berlin: Springer.

    Google Scholar 

  • Caselles, V., & Chambolle, A. (2006). Anisotropic curvature-driven flow of convex sets. Nonlinear Analysis, 65(8), 1547–1577.

    Article  MATH  MathSciNet  Google Scholar 

  • Caselles, V., Chambolle, A., & Novaga, M. (2007). The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Modeling and Simulation, 6(3), 879–894.

    Article  MATH  MathSciNet  Google Scholar 

  • Chambolle, A. (2004). An algorithm for mean curvature motion. Interfaces and Free Boundaries, 6(2), 195–218.

    MATH  MathSciNet  Google Scholar 

  • Chambolle, A. (2005). Total variation minimization and a class of binary MRF models. In Lecture notes in computer science. Energy minimization methods in computer vision and pattern recognition (pp. 136–152). Berlin: Springer.

    Chapter  Google Scholar 

  • Chambolle, A., & Novaga, M. (2007). Approximation of the anisotropic mean curvature flow. Mathematical Models and Methods in the Applied Sciences, 17(6), 833–844.

    Article  MATH  MathSciNet  Google Scholar 

  • Chambolle, A., & Novaga, M. (2008). Implicit time discretization of the mean curvature flow with a discontinuous forcing term. Interfaces and Free Boundaries, 10(3), 283–300.

    MATH  MathSciNet  Google Scholar 

  • Chan, T. F., & Esedoḡlu, S. (2005). Aspects of total variation regularized L 1 function approximation. SIAM Journal on Applied Mathematics, 65(5), 1817–1837 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen, L. D. (1991). On active contour models and balloons. CVGIP: Image Understanding, 53(2), 211–218.

    Article  MATH  Google Scholar 

  • Combettes, P. L., & Wajs, V. R. (2005). Signal recovery by proximal forward-backward splitting. Multiscale Modeling and Simulation, 4(4), 1168–1200 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  • Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Cunningham, W. H. (1985). On submodular function minimization. Combinatoria, 5, 185–192.

    Article  MATH  MathSciNet  Google Scholar 

  • Darbon, J. (2005) Total variation minimization with L 1 data fidelity as a contrast invariant filter. In Proceedings of the 4th international symposium on image and signal processing and analysis (ISPA 2005), Zagreb, Croatia, September 2005.

  • Darbon, J., & Sigelle, M. (2006). Image restoration with discrete constrained total variation part i: fast and exact optimization. Journal of Mathematical Imaging and Vision, 26(3), 261–276.

    Article  MathSciNet  Google Scholar 

  • Eisner, M. J., & Severance, D. G. (1976). Mathematical techniques for efficient record segmentation in large shared databases. Journal of the ACM, 23(4), 619–635.

    Article  MATH  MathSciNet  Google Scholar 

  • Ekeland, I., & Témam, R. (1999). Classics in applied mathematics : Vol. 28. Convex analysis and variational problems. Philadelphia: SIAM. (English ed., translated from the French).

    MATH  Google Scholar 

  • Federer, H. (1969). Geometric measure theory. New York: Springer.

    MATH  Google Scholar 

  • Freedman, D., & Drineas, P. (2005). Energy minimization via graph cuts: settling what is possible. In IEEE computer society conference on computer vision and pattern recognition (CVPR) (pp. 939–946).

  • Gallo, G., Grigoriadis, M. D., & Tarjan, R. E. (1989). A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing, 18(1), 30–55.

    Article  MATH  MathSciNet  Google Scholar 

  • Giusti, E. (1984). Monographs in mathematics : Vol. 80. Minimal surfaces and functions of bounded variation. Basel: Birkhäuser.

    MATH  Google Scholar 

  • Goldberg, A. V., & Tarjan, R. E. (1986). A new approach to the maximum flow problem. In STOC’86: proceedings of the eighteenth annual ACM symposium on theory of computing (pp. 136–146). New York: ACM Press.

    Chapter  Google Scholar 

  • Goldfarb, D., & Yin, Y. (2007). Parametric maximum flow algorithms for fast total variation minimization. Technical report, Rice University (2007).

  • Greig, D. M., Porteous, B. T., & Seheult, A. H. (1989). Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society Series B, 51, 271–279.

    Google Scholar 

  • Grötschel, M., Lovász, L., & Schrijver, A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatoria, 1, 169–197.

    Article  MATH  Google Scholar 

  • Hochbaum, D. S. (2001). An efficient algorithm for image segmentation, Markov random fields and related problems. Journal of the ACM, 48(4), 686–701 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  • Hochbaum, D. S. (2005). Complexity and algorithms for convex network optimization and other nonlinear problems. A Quarterly Journal of Operations Research, 3(3), 171–216.

    MATH  MathSciNet  Google Scholar 

  • Iwata, S., Fleischer, L., & Fujishige, S. (2000). A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. In STOC’00: Proceedings of the thirty-second annual ACM symposium on theory of computing (pp. 97–106). New York: ACM.

    Chapter  Google Scholar 

  • Juan, O., & Boykov, Y. (2006). Active graph cuts. In Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition (CVPR), (pp. 1023–1029).

  • Kholi, P., & Torr, P. (2005). Efficient solving dynamic Markov random fields using graph cuts. In Proceedings of the 10th international conference on computer vision (pp. 922–929).

  • Kolmogorov, V., & Zabih, R. (2002). What energy functions can be minimized via graph cuts? In European conference on computer vision (Vol. 3, pp. 65–81), May 2002.

  • Kolmogorov, V., & Zabih, R. (2004). What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(26), 147–159.

    Article  Google Scholar 

  • Kolmogorov, V., Boykov, Y., & Rother, C. (2007). Applications of parametric maxflow in computer vision. In Proceedings of the IEEE 11th international conference on computer vision (ICCV 2007) (pp. 1–8).

  • Lee, J. (2004). A first course in combinatorial optimization. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Lovász, L. (1983). Submodular functions and convexity. In Mathematical programming: the state of the art (pp. 235–257). Bonn, 1982. Berlin: Springer.

    Google Scholar 

  • Luckhaus, S., & Sturzenhecker, T. (1995). Implicit time discretization for the mean curvature flow equation. Calculus of Variations and Partial Differential Equations, 3(2), 253–271.

    Article  MATH  MathSciNet  Google Scholar 

  • McCormick, S. T. (1996) Fast algorithms for parametric scheduling come from extensions to parametric maximum flow. In Proceedings of the twenty-eighth annual ACM symposium on theory of computing (pp. 319–328).

  • Murota, K. (2003). SIAM monographs on discrete mathematics and applications. Discrete convex analysis. Philadelphia: SIAM.

    MATH  Google Scholar 

  • Nesterov, Y. (2004). Introductory lectures on convex optimization: a basic course. Dordrecht: Kluwer.

    MATH  Google Scholar 

  • Nesterov, Y. (2007) Gradient methods for minimizing composite objective function. Technical report, CORE discussion paper 2007/76, Catholic University of Louvain (2007).

  • Paolini, M., & Pasquarelli, F. (2000). Numerical simulation of crystalline curvature flow in 3D by interface diffusion. In GAKUTO international series. Mathematical sciences and applications : Vol. 14. Free boundary problems: theory and applications, II (pp. 376–389). Chiba, 1999. Tokyo: Gakkōtosho.

    Google Scholar 

  • Picard, J. C., & Ratliff, H. D. (1975). Minimum cuts and related problems. Networks, 5(4), 357–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Rockafellar, R. T. (1997). Princeton landmarks in mathematics. Convex analysis. Princeton: Princeton University Press (Reprint of the 1970 original Princeton paperbacks).

    MATH  Google Scholar 

  • Rouy, E., & Tourin, A. (1992). A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis, 29(3), 867–884.

    Article  MATH  MathSciNet  Google Scholar 

  • Schrijver, A. (2000). A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory (B), 80, 436–355.

    MathSciNet  Google Scholar 

  • Sethian, J. A. (1999). Fast marching methods. SIAM Review, 41(2), 199–235 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  • Tsitsiklis, J. N. (1995). Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control, 40(9), 1528–1538.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. CMAP, Ecole Polytechnique, CNRS, 91128, Palaiseau, France

    Antonin Chambolle

  2. Mathematics Department, UCLA, Los Angeles, USA

    Jérôme Darbon

Authors
  1. Antonin Chambolle
    View author publications

    Search author on:PubMed Google Scholar

  2. Jérôme Darbon
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Antonin Chambolle.

Additional information

A. Chambolle’s research supported by ANR project “MICA”, grant ANR-08-BLAN-0082.

J. Darbon’s research supported by ONR grant N000140710810.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Chambolle, A., Darbon, J. On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows. Int J Comput Vis 84, 288–307 (2009). https://doi.org/10.1007/s11263-009-0238-9

Download citation

  • Received: 23 June 2005

  • Accepted: 08 April 2009

  • Published: 23 April 2009

  • Issue date: September 2009

  • DOI: https://doi.org/10.1007/s11263-009-0238-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Crystalline and anisotropic mean curvature flow
  • Variational approaches
  • Total variation
  • Submodular functions
  • Max-flow/min-cut
  • Parametric max-flow algorithms

Profiles

  1. Antonin Chambolle View author profile

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2026 Springer Nature