LLVM 20.0.0git
TargetTransformInfo.h
Go to the documentation of this file.
1//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This pass exposes codegen information to IR-level passes. Every
10/// transformation that uses codegen information is broken into three parts:
11/// 1. The IR-level analysis pass.
12/// 2. The IR-level transformation interface which provides the needed
13/// information.
14/// 3. Codegen-level implementation which uses target-specific hooks.
15///
16/// This file defines #2, which is the interface that IR-level transformations
17/// use for querying the codegen.
18///
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/ArrayRef.h"
26#include "llvm/IR/FMF.h"
27#include "llvm/IR/InstrTypes.h"
28#include "llvm/IR/PassManager.h"
29#include "llvm/Pass.h"
33#include <functional>
34#include <optional>
35#include <utility>
36
37namespace llvm {
38
39namespace Intrinsic {
40typedef unsigned ID;
41}
42
43class AllocaInst;
44class AssumptionCache;
45class BlockFrequencyInfo;
46class DominatorTree;
47class BranchInst;
48class Function;
49class GlobalValue;
50class InstCombiner;
51class OptimizationRemarkEmitter;
52class InterleavedAccessInfo;
53class IntrinsicInst;
54class LoadInst;
55class Loop;
56class LoopInfo;
57class LoopVectorizationLegality;
58class ProfileSummaryInfo;
59class RecurrenceDescriptor;
60class SCEV;
61class ScalarEvolution;
62class SmallBitVector;
63class StoreInst;
64class SwitchInst;
65class TargetLibraryInfo;
66class Type;
67class VPIntrinsic;
68struct KnownBits;
69
70/// Information about a load/store intrinsic defined by the target.
72 /// This is the pointer that the intrinsic is loading from or storing to.
73 /// If this is non-null, then analysis/optimization passes can assume that
74 /// this intrinsic is functionally equivalent to a load/store from this
75 /// pointer.
76 Value *PtrVal = nullptr;
77
78 // Ordering for atomic operations.
80
81 // Same Id is set by the target for corresponding load/store intrinsics.
82 unsigned short MatchingId = 0;
83
84 bool ReadMem = false;
85 bool WriteMem = false;
86 bool IsVolatile = false;
87
88 bool isUnordered() const {
92 }
93};
94
95/// Attributes of a target dependent hardware loop.
97 HardwareLoopInfo() = delete;
99 Loop *L = nullptr;
102 const SCEV *ExitCount = nullptr;
104 Value *LoopDecrement = nullptr; // Decrement the loop counter by this
105 // value in every iteration.
106 bool IsNestingLegal = false; // Can a hardware loop be a parent to
107 // another hardware loop?
108 bool CounterInReg = false; // Should loop counter be updated in
109 // the loop via a phi?
110 bool PerformEntryTest = false; // Generate the intrinsic which also performs
111 // icmp ne zero on the loop counter value and
112 // produces an i1 to guard the loop entry.
114 DominatorTree &DT, bool ForceNestedLoop = false,
115 bool ForceHardwareLoopPHI = false);
116 bool canAnalyze(LoopInfo &LI);
117};
118
120 const IntrinsicInst *II = nullptr;
121 Type *RetTy = nullptr;
122 Intrinsic::ID IID;
123 SmallVector<Type *, 4> ParamTys;
125 FastMathFlags FMF;
126 // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
127 // arguments and the return value will be computed based on types.
128 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
129
130public:
132 Intrinsic::ID Id, const CallBase &CI,
134 bool TypeBasedOnly = false);
135
137 Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
138 FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
140
143
147 const IntrinsicInst *I = nullptr,
149
150 Intrinsic::ID getID() const { return IID; }
151 const IntrinsicInst *getInst() const { return II; }
152 Type *getReturnType() const { return RetTy; }
153 FastMathFlags getFlags() const { return FMF; }
154 InstructionCost getScalarizationCost() const { return ScalarizationCost; }
156 const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
157
158 bool isTypeBasedOnly() const {
159 return Arguments.empty();
160 }
161
162 bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
163};
164
166 /// Don't use tail folding
167 None,
168 /// Use predicate only to mask operations on data in the loop.
169 /// When the VL is not known to be a power-of-2, this method requires a
170 /// runtime overflow check for the i + VL in the loop because it compares the
171 /// scalar induction variable against the tripcount rounded up by VL which may
172 /// overflow. When the VL is a power-of-2, both the increment and uprounded
173 /// tripcount will overflow to 0, which does not require a runtime check
174 /// since the loop is exited when the loop induction variable equals the
175 /// uprounded trip-count, which are both 0.
176 Data,
177 /// Same as Data, but avoids using the get.active.lane.mask intrinsic to
178 /// calculate the mask and instead implements this with a
179 /// splat/stepvector/cmp.
180 /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the
181 /// active.lane.mask intrinsic when it is not natively supported?
183 /// Use predicate to control both data and control flow.
184 /// This method always requires a runtime overflow check for the i + VL
185 /// increment inside the loop, because it uses the result direclty in the
186 /// active.lane.mask to calculate the mask for the next iteration. If the
187 /// increment overflows, the mask is no longer correct.
189 /// Use predicate to control both data and control flow, but modify
190 /// the trip count so that a runtime overflow check can be avoided
191 /// and such that the scalar epilogue loop can always be removed.
193 /// Use predicated EVL instructions for tail-folding.
194 /// Indicates that VP intrinsics should be used.
196};
197
204 : TLI(TLI), LVL(LVL), IAI(IAI) {}
205};
206
207class TargetTransformInfo;
209
210/// This pass provides access to the codegen interfaces that are needed
211/// for IR-level transformations.
213public:
215
216 /// Get the kind of extension that an instruction represents.
219
220 /// Construct a TTI object using a type implementing the \c Concept
221 /// API below.
222 ///
223 /// This is used by targets to construct a TTI wrapping their target-specific
224 /// implementation that encodes appropriate costs for their target.
225 template <typename T> TargetTransformInfo(T Impl);
226
227 /// Construct a baseline TTI object using a minimal implementation of
228 /// the \c Concept API below.
229 ///
230 /// The TTI implementation will reflect the information in the DataLayout
231 /// provided if non-null.
232 explicit TargetTransformInfo(const DataLayout &DL);
233
234 // Provide move semantics.
237
238 // We need to define the destructor out-of-line to define our sub-classes
239 // out-of-line.
241
242 /// Handle the invalidation of this information.
243 ///
244 /// When used as a result of \c TargetIRAnalysis this method will be called
245 /// when the function this was computed for changes. When it returns false,
246 /// the information is preserved across those changes.
249 // FIXME: We should probably in some way ensure that the subtarget
250 // information for a function hasn't changed.
251 return false;
252 }
253
254 /// \name Generic Target Information
255 /// @{
256
257 /// The kind of cost model.
258 ///
259 /// There are several different cost models that can be customized by the
260 /// target. The normalization of each cost model may be target specific.
261 /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
262 /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
264 TCK_RecipThroughput, ///< Reciprocal throughput.
265 TCK_Latency, ///< The latency of instruction.
266 TCK_CodeSize, ///< Instruction code size.
267 TCK_SizeAndLatency ///< The weighted sum of size and latency.
268 };
269
270 /// Underlying constants for 'cost' values in this interface.
271 ///
272 /// Many APIs in this interface return a cost. This enum defines the
273 /// fundamental values that should be used to interpret (and produce) those
274 /// costs. The costs are returned as an int rather than a member of this
275 /// enumeration because it is expected that the cost of one IR instruction
276 /// may have a multiplicative factor to it or otherwise won't fit directly
277 /// into the enum. Moreover, it is common to sum or average costs which works
278 /// better as simple integral values. Thus this enum only provides constants.
279 /// Also note that the returned costs are signed integers to make it natural
280 /// to add, subtract, and test with zero (a common boundary condition). It is
281 /// not expected that 2^32 is a realistic cost to be modeling at any point.
282 ///
283 /// Note that these costs should usually reflect the intersection of code-size
284 /// cost and execution cost. A free instruction is typically one that folds
285 /// into another instruction. For example, reg-to-reg moves can often be
286 /// skipped by renaming the registers in the CPU, but they still are encoded
287 /// and thus wouldn't be considered 'free' here.
289 TCC_Free = 0, ///< Expected to fold away in lowering.
290 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
291 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
292 };
293
294 /// Estimate the cost of a GEP operation when lowered.
295 ///
296 /// \p PointeeType is the source element type of the GEP.
297 /// \p Ptr is the base pointer operand.
298 /// \p Operands is the list of indices following the base pointer.
299 ///
300 /// \p AccessType is a hint as to what type of memory might be accessed by
301 /// users of the GEP. getGEPCost will use it to determine if the GEP can be
302 /// folded into the addressing mode of a load/store. If AccessType is null,
303 /// then the resulting target type based off of PointeeType will be used as an
304 /// approximation.
306 getGEPCost(Type *PointeeType, const Value *Ptr,
307 ArrayRef<const Value *> Operands, Type *AccessType = nullptr,
309
310 /// Describe known properties for a set of pointers.
312 /// All the GEPs in a set have same base address.
313 unsigned IsSameBaseAddress : 1;
314 /// These properties only valid if SameBaseAddress is set.
315 /// True if all pointers are separated by a unit stride.
316 unsigned IsUnitStride : 1;
317 /// True if distance between any two neigbouring pointers is a known value.
318 unsigned IsKnownStride : 1;
319 unsigned Reserved : 29;
320
321 bool isSameBase() const { return IsSameBaseAddress; }
322 bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; }
324
326 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1,
327 /*IsKnownStride=*/1, 0};
328 }
330 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
331 /*IsKnownStride=*/1, 0};
332 }
334 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
335 /*IsKnownStride=*/0, 0};
336 }
337 };
338 static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?");
339
340 /// Estimate the cost of a chain of pointers (typically pointer operands of a
341 /// chain of loads or stores within same block) operations set when lowered.
342 /// \p AccessTy is the type of the loads/stores that will ultimately use the
343 /// \p Ptrs.
346 const PointersChainInfo &Info, Type *AccessTy,
348
349 /// \returns A value by which our inlining threshold should be multiplied.
350 /// This is primarily used to bump up the inlining threshold wholesale on
351 /// targets where calls are unusually expensive.
352 ///
353 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
354 /// individual classes of instructions would be better.
355 unsigned getInliningThresholdMultiplier() const;
356
359
360 /// \returns The bonus of inlining the last call to a static function.
362
363 /// \returns A value to be added to the inlining threshold.
364 unsigned adjustInliningThreshold(const CallBase *CB) const;
365
366 /// \returns The cost of having an Alloca in the caller if not inlined, to be
367 /// added to the threshold
368 unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const;
369
370 /// \returns Vector bonus in percent.
371 ///
372 /// Vector bonuses: We want to more aggressively inline vector-dense kernels
373 /// and apply this bonus based on the percentage of vector instructions. A
374 /// bonus is applied if the vector instructions exceed 50% and half that
375 /// amount is applied if it exceeds 10%. Note that these bonuses are some what
376 /// arbitrary and evolved over time by accident as much as because they are
377 /// principled bonuses.
378 /// FIXME: It would be nice to base the bonus values on something more
379 /// scientific. A target may has no bonus on vector instructions.
381
382 /// \return the expected cost of a memcpy, which could e.g. depend on the
383 /// source/destination type and alignment and the number of bytes copied.
385
386 /// Returns the maximum memset / memcpy size in bytes that still makes it
387 /// profitable to inline the call.
389
390 /// \return The estimated number of case clusters when lowering \p 'SI'.
391 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
392 /// table.
394 unsigned &JTSize,
396 BlockFrequencyInfo *BFI) const;
397
398 /// Estimate the cost of a given IR user when lowered.
399 ///
400 /// This can estimate the cost of either a ConstantExpr or Instruction when
401 /// lowered.
402 ///
403 /// \p Operands is a list of operands which can be a result of transformations
404 /// of the current operands. The number of the operands on the list must equal
405 /// to the number of the current operands the IR user has. Their order on the
406 /// list must be the same as the order of the current operands the IR user
407 /// has.
408 ///
409 /// The returned cost is defined in terms of \c TargetCostConstants, see its
410 /// comments for a detailed explanation of the cost values.
414
415 /// This is a helper function which calls the three-argument
416 /// getInstructionCost with \p Operands which are the current operands U has.
418 TargetCostKind CostKind) const {
419 SmallVector<const Value *, 4> Operands(U->operand_values());
421 }
422
423 /// If a branch or a select condition is skewed in one direction by more than
424 /// this factor, it is very likely to be predicted correctly.
426
427 /// Returns estimated penalty of a branch misprediction in latency. Indicates
428 /// how aggressive the target wants for eliminating unpredictable branches. A
429 /// zero return value means extra optimization applied to them should be
430 /// minimal.
432
433 /// Return true if branch divergence exists.
434 ///
435 /// Branch divergence has a significantly negative impact on GPU performance
436 /// when threads in the same wavefront take different paths due to conditional
437 /// branches.
438 ///
439 /// If \p F is passed, provides a context function. If \p F is known to only
440 /// execute in a single threaded environment, the target may choose to skip
441 /// uniformity analysis and assume all values are uniform.
442 bool hasBranchDivergence(const Function *F = nullptr) const;
443
444 /// Returns whether V is a source of divergence.
445 ///
446 /// This function provides the target-dependent information for
447 /// the target-independent UniformityAnalysis.
448 bool isSourceOfDivergence(const Value *V) const;
449
450 // Returns true for the target specific
451 // set of operations which produce uniform result
452 // even taking non-uniform arguments
453 bool isAlwaysUniform(const Value *V) const;
454
455 /// Query the target whether the specified address space cast from FromAS to
456 /// ToAS is valid.
457 bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
458
459 /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address.
460 bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const;
461
462 /// Returns the address space ID for a target's 'flat' address space. Note
463 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
464 /// refers to as the generic address space. The flat address space is a
465 /// generic address space that can be used access multiple segments of memory
466 /// with different address spaces. Access of a memory location through a
467 /// pointer with this address space is expected to be legal but slower
468 /// compared to the same memory location accessed through a pointer with a
469 /// different address space.
470 //
471 /// This is for targets with different pointer representations which can
472 /// be converted with the addrspacecast instruction. If a pointer is converted
473 /// to this address space, optimizations should attempt to replace the access
474 /// with the source address space.
475 ///
476 /// \returns ~0u if the target does not have such a flat address space to
477 /// optimize away.
478 unsigned getFlatAddressSpace() const;
479
480 /// Return any intrinsic address operand indexes which may be rewritten if
481 /// they use a flat address space pointer.
482 ///
483 /// \returns true if the intrinsic was handled.
485 Intrinsic::ID IID) const;
486
487 bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
488
489 /// Return true if globals in this address space can have initializers other
490 /// than `undef`.
492
493 unsigned getAssumedAddrSpace(const Value *V) const;
494
495 bool isSingleThreaded() const;
496
497 std::pair<const Value *, unsigned>
498 getPredicatedAddrSpace(const Value *V) const;
499
500 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
501 /// NewV, which has a different address space. This should happen for every
502 /// operand index that collectFlatAddressOperands returned for the intrinsic.
503 /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
504 /// new value (which may be the original \p II with modified operands).
506 Value *NewV) const;
507
508 /// Test whether calls to a function lower to actual program function
509 /// calls.
510 ///
511 /// The idea is to test whether the program is likely to require a 'call'
512 /// instruction or equivalent in order to call the given function.
513 ///
514 /// FIXME: It's not clear that this is a good or useful query API. Client's
515 /// should probably move to simpler cost metrics using the above.
516 /// Alternatively, we could split the cost interface into distinct code-size
517 /// and execution-speed costs. This would allow modelling the core of this
518 /// query more accurately as a call is a single small instruction, but
519 /// incurs significant execution cost.
520 bool isLoweredToCall(const Function *F) const;
521
522 struct LSRCost {
523 /// TODO: Some of these could be merged. Also, a lexical ordering
524 /// isn't always optimal.
525 unsigned Insns;
526 unsigned NumRegs;
527 unsigned AddRecCost;
528 unsigned NumIVMuls;
529 unsigned NumBaseAdds;
530 unsigned ImmCost;
531 unsigned SetupCost;
532 unsigned ScaleCost;
533 };
534
535 /// Parameters that control the generic loop unrolling transformation.
537 /// The cost threshold for the unrolled loop. Should be relative to the
538 /// getInstructionCost values returned by this API, and the expectation is
539 /// that the unrolled loop's instructions when run through that interface
540 /// should not exceed this cost. However, this is only an estimate. Also,
541 /// specific loops may be unrolled even with a cost above this threshold if
542 /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
543 /// restriction.
544 unsigned Threshold;
545 /// If complete unrolling will reduce the cost of the loop, we will boost
546 /// the Threshold by a certain percent to allow more aggressive complete
547 /// unrolling. This value provides the maximum boost percentage that we
548 /// can apply to Threshold (The value should be no less than 100).
549 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
550 /// MaxPercentThresholdBoost / 100)
551 /// E.g. if complete unrolling reduces the loop execution time by 50%
552 /// then we boost the threshold by the factor of 2x. If unrolling is not
553 /// expected to reduce the running time, then we do not increase the
554 /// threshold.
556 /// The cost threshold for the unrolled loop when optimizing for size (set
557 /// to UINT_MAX to disable).
559 /// The cost threshold for the unrolled loop, like Threshold, but used
560 /// for partial/runtime unrolling (set to UINT_MAX to disable).
562 /// The cost threshold for the unrolled loop when optimizing for size, like
563 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
564 /// UINT_MAX to disable).
566 /// A forced unrolling factor (the number of concatenated bodies of the
567 /// original loop in the unrolled loop body). When set to 0, the unrolling
568 /// transformation will select an unrolling factor based on the current cost
569 /// threshold and other factors.
570 unsigned Count;
571 /// Default unroll count for loops with run-time trip count.
573 // Set the maximum unrolling factor. The unrolling factor may be selected
574 // using the appropriate cost threshold, but may not exceed this number
575 // (set to UINT_MAX to disable). This does not apply in cases where the
576 // loop is being fully unrolled.
577 unsigned MaxCount;
578 /// Set the maximum upper bound of trip count. Allowing the MaxUpperBound
579 /// to be overrided by a target gives more flexiblity on certain cases.
580 /// By default, MaxUpperBound uses UnrollMaxUpperBound which value is 8.
582 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
583 /// applies even if full unrolling is selected. This allows a target to fall
584 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
586 // Represents number of instructions optimized when "back edge"
587 // becomes "fall through" in unrolled loop.
588 // For now we count a conditional branch on a backedge and a comparison
589 // feeding it.
590 unsigned BEInsns;
591 /// Allow partial unrolling (unrolling of loops to expand the size of the
592 /// loop body, not only to eliminate small constant-trip-count loops).
594 /// Allow runtime unrolling (unrolling of loops to expand the size of the
595 /// loop body even when the number of loop iterations is not known at
596 /// compile time).
598 /// Allow generation of a loop remainder (extra iterations after unroll).
600 /// Allow emitting expensive instructions (such as divisions) when computing
601 /// the trip count of a loop for runtime unrolling.
603 /// Apply loop unroll on any kind of loop
604 /// (mainly to loops that fail runtime unrolling).
605 bool Force;
606 /// Allow using trip count upper bound to unroll loops.
608 /// Allow unrolling of all the iterations of the runtime loop remainder.
610 /// Allow unroll and jam. Used to enable unroll and jam for the target.
612 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
613 /// value above is used during unroll and jam for the outer loop size.
614 /// This value is used in the same manner to limit the size of the inner
615 /// loop.
617 /// Don't allow loop unrolling to simulate more than this number of
618 /// iterations when checking full unroll profitability
620 /// Don't disable runtime unroll for the loops which were vectorized.
622 /// Don't allow runtime unrolling if expanding the trip count takes more
623 /// than SCEVExpansionBudget.
625 };
626
627 /// Get target-customized preferences for the generic loop unrolling
628 /// transformation. The caller will initialize UP with the current
629 /// target-independent defaults.
632 OptimizationRemarkEmitter *ORE) const;
633
634 /// Query the target whether it would be profitable to convert the given loop
635 /// into a hardware loop.
638 HardwareLoopInfo &HWLoopInfo) const;
639
640 // Query the target for which minimum vectorization factor epilogue
641 // vectorization should be considered.
642 unsigned getEpilogueVectorizationMinVF() const;
643
644 /// Query the target whether it would be prefered to create a predicated
645 /// vector loop, which can avoid the need to emit a scalar epilogue loop.
647
648 /// Query the target what the preferred style of tail folding is.
649 /// \param IVUpdateMayOverflow Tells whether it is known if the IV update
650 /// may (or will never) overflow for the suggested VF/UF in the given loop.
651 /// Targets can use this information to select a more optimal tail folding
652 /// style. The value conservatively defaults to true, such that no assumptions
653 /// are made on overflow.
655 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const;
656
657 // Parameters that control the loop peeling transformation
659 /// A forced peeling factor (the number of bodied of the original loop
660 /// that should be peeled off before the loop body). When set to 0, the
661 /// a peeling factor based on profile information and other factors.
662 unsigned PeelCount;
663 /// Allow peeling off loop iterations.
665 /// Allow peeling off loop iterations for loop nests.
667 /// Allow peeling basing on profile. Uses to enable peeling off all
668 /// iterations basing on provided profile.
669 /// If the value is true the peeling cost model can decide to peel only
670 /// some iterations and in this case it will set this to false.
672 };
673
674 /// Get target-customized preferences for the generic loop peeling
675 /// transformation. The caller will initialize \p PP with the current
676 /// target-independent defaults with information from \p L and \p SE.
678 PeelingPreferences &PP) const;
679
680 /// Targets can implement their own combinations for target-specific
681 /// intrinsics. This function will be called from the InstCombine pass every
682 /// time a target-specific intrinsic is encountered.
683 ///
684 /// \returns std::nullopt to not do anything target specific or a value that
685 /// will be returned from the InstCombiner. It is possible to return null and
686 /// stop further processing of the intrinsic by returning nullptr.
687 std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC,
688 IntrinsicInst & II) const;
689 /// Can be used to implement target-specific instruction combining.
690 /// \see instCombineIntrinsic
691 std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
692 InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask,
693 KnownBits & Known, bool &KnownBitsComputed) const;
694 /// Can be used to implement target-specific instruction combining.
695 /// \see instCombineIntrinsic
696 std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
697 InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts,
698 APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3,
699 std::function<void(Instruction *, unsigned, APInt, APInt &)>
700 SimplifyAndSetOp) const;
701 /// @}
702
703 /// \name Scalar Target Information
704 /// @{
705
706 /// Flags indicating the kind of support for population count.
707 ///
708 /// Compared to the SW implementation, HW support is supposed to
709 /// significantly boost the performance when the population is dense, and it
710 /// may or may not degrade performance if the population is sparse. A HW
711 /// support is considered as "Fast" if it can outperform, or is on a par
712 /// with, SW implementation when the population is sparse; otherwise, it is
713 /// considered as "Slow".
715
716 /// Return true if the specified immediate is legal add immediate, that
717 /// is the target has add instructions which can add a register with the
718 /// immediate without having to materialize the immediate into a register.
719 bool isLegalAddImmediate(int64_t Imm) const;
720
721 /// Return true if adding the specified scalable immediate is legal, that is
722 /// the target has add instructions which can add a register with the
723 /// immediate (multiplied by vscale) without having to materialize the
724 /// immediate into a register.
725 bool isLegalAddScalableImmediate(int64_t Imm) const;
726
727 /// Return true if the specified immediate is legal icmp immediate,
728 /// that is the target has icmp instructions which can compare a register
729 /// against the immediate without having to materialize the immediate into a
730 /// register.
731 bool isLegalICmpImmediate(int64_t Imm) const;
732
733 /// Return true if the addressing mode represented by AM is legal for
734 /// this target, for a load/store of the specified type.
735 /// The type may be VoidTy, in which case only return true if the addressing
736 /// mode is legal for a load/store of any legal type.
737 /// If target returns true in LSRWithInstrQueries(), I may be valid.
738 /// \param ScalableOffset represents a quantity of bytes multiplied by vscale,
739 /// an invariant value known only at runtime. Most targets should not accept
740 /// a scalable offset.
741 ///
742 /// TODO: Handle pre/postinc as well.
743 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
744 bool HasBaseReg, int64_t Scale,
745 unsigned AddrSpace = 0, Instruction *I = nullptr,
746 int64_t ScalableOffset = 0) const;
747
748 /// Return true if LSR cost of C1 is lower than C2.
750 const TargetTransformInfo::LSRCost &C2) const;
751
752 /// Return true if LSR major cost is number of registers. Targets which
753 /// implement their own isLSRCostLess and unset number of registers as major
754 /// cost should return false, otherwise return true.
755 bool isNumRegsMajorCostOfLSR() const;
756
757 /// Return true if LSR should drop a found solution if it's calculated to be
758 /// less profitable than the baseline.
760
761 /// \returns true if LSR should not optimize a chain that includes \p I.
763
764 /// Return true if the target can fuse a compare and branch.
765 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
766 /// calculation for the instructions in a loop.
767 bool canMacroFuseCmp() const;
768
769 /// Return true if the target can save a compare for loop count, for example
770 /// hardware loop saves a compare.
771 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
773 TargetLibraryInfo *LibInfo) const;
774
779 };
780
781 /// Return the preferred addressing mode LSR should make efforts to generate.
783 ScalarEvolution *SE) const;
784
785 /// Return true if the target supports masked store.
786 bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
787 /// Return true if the target supports masked load.
788 bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
789
790 /// Return true if the target supports nontemporal store.
791 bool isLegalNTStore(Type *DataType, Align Alignment) const;
792 /// Return true if the target supports nontemporal load.
793 bool isLegalNTLoad(Type *DataType, Align Alignment) const;
794
795 /// \Returns true if the target supports broadcasting a load to a vector of
796 /// type <NumElements x ElementTy>.
797 bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const;
798
799 /// Return true if the target supports masked scatter.
800 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
801 /// Return true if the target supports masked gather.
802 bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
803 /// Return true if the target forces scalarizing of llvm.masked.gather
804 /// intrinsics.
805 bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const;
806 /// Return true if the target forces scalarizing of llvm.masked.scatter
807 /// intrinsics.
808 bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const;
809
810 /// Return true if the target supports masked compress store.
811 bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const;
812 /// Return true if the target supports masked expand load.
813 bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const;
814
815 /// Return true if the target supports strided load.
816 bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const;
817
818 /// Return true is the target supports interleaved access for the given vector
819 /// type \p VTy, interleave factor \p Factor, alignment \p Alignment and
820 /// address space \p AddrSpace.
821 bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
822 Align Alignment, unsigned AddrSpace) const;
823
824 // Return true if the target supports masked vector histograms.
825 bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const;
826
827 /// Return true if this is an alternating opcode pattern that can be lowered
828 /// to a single instruction on the target. In X86 this is for the addsub
829 /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
830 /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
831 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
832 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
833 /// \p VecTy is the vector type of the instruction to be generated.
834 bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
835 const SmallBitVector &OpcodeMask) const;
836
837 /// Return true if we should be enabling ordered reductions for the target.
838 bool enableOrderedReductions() const;
839
840 /// Return true if the target has a unified operation to calculate division
841 /// and remainder. If so, the additional implicit multiplication and
842 /// subtraction required to calculate a remainder from division are free. This
843 /// can enable more aggressive transformations for division and remainder than
844 /// would typically be allowed using throughput or size cost models.
845 bool hasDivRemOp(Type *DataType, bool IsSigned) const;
846
847 /// Return true if the given instruction (assumed to be a memory access
848 /// instruction) has a volatile variant. If that's the case then we can avoid
849 /// addrspacecast to generic AS for volatile loads/stores. Default
850 /// implementation returns false, which prevents address space inference for
851 /// volatile loads/stores.
852 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
853
854 /// Return true if target doesn't mind addresses in vectors.
855 bool prefersVectorizedAddressing() const;
856
857 /// Return the cost of the scaling factor used in the addressing
858 /// mode represented by AM for this target, for a load/store
859 /// of the specified type.
860 /// If the AM is supported, the return value must be >= 0.
861 /// If the AM is not supported, it returns a negative value.
862 /// TODO: Handle pre/postinc as well.
864 StackOffset BaseOffset, bool HasBaseReg,
865 int64_t Scale,
866 unsigned AddrSpace = 0) const;
867
868 /// Return true if the loop strength reduce pass should make
869 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
870 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
871 /// immediate offset and no index register.
872 bool LSRWithInstrQueries() const;
873
874 /// Return true if it's free to truncate a value of type Ty1 to type
875 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
876 /// by referencing its sub-register AX.
877 bool isTruncateFree(Type *Ty1, Type *Ty2) const;
878
879 /// Return true if it is profitable to hoist instruction in the
880 /// then/else to before if.
881 bool isProfitableToHoist(Instruction *I) const;
882
883 bool useAA() const;
884
885 /// Return true if this type is legal.
886 bool isTypeLegal(Type *Ty) const;
887
888 /// Returns the estimated number of registers required to represent \p Ty.
889 unsigned getRegUsageForType(Type *Ty) const;
890
891 /// Return true if switches should be turned into lookup tables for the
892 /// target.
893 bool shouldBuildLookupTables() const;
894
895 /// Return true if switches should be turned into lookup tables
896 /// containing this constant value for the target.
898
899 /// Return true if lookup tables should be turned into relative lookup tables.
900 bool shouldBuildRelLookupTables() const;
901
902 /// Return true if the input function which is cold at all call sites,
903 /// should use coldcc calling convention.
904 bool useColdCCForColdCall(Function &F) const;
905
907
908 /// Identifies if the vector form of the intrinsic has a scalar operand.
910 unsigned ScalarOpdIdx) const;
911
912 /// Identifies if the vector form of the intrinsic is overloaded on the type
913 /// of the operand at index \p OpdIdx, or on the return type if \p OpdIdx is
914 /// -1.
916 int OpdIdx) const;
917
918 /// Identifies if the vector form of the intrinsic that returns a struct is
919 /// overloaded at the struct element index \p RetIdx.
921 int RetIdx) const;
922
923 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
924 /// are set if the demanded result elements need to be inserted and/or
925 /// extracted from vectors. The involved values may be passed in VL if
926 /// Insert is true.
928 const APInt &DemandedElts,
929 bool Insert, bool Extract,
931 ArrayRef<Value *> VL = {}) const;
932
933 /// Estimate the overhead of scalarizing an instructions unique
934 /// non-constant operands. The (potentially vector) types to use for each of
935 /// argument are passes via Tys.
936 InstructionCost
937 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
938 ArrayRef<Type *> Tys,
940
941 /// If target has efficient vector element load/store instructions, it can
942 /// return true here so that insertion/extraction costs are not added to
943 /// the scalarization cost of a load/store.
945
946 /// If the target supports tail calls.
947 bool supportsTailCalls() const;
948
949 /// If target supports tail call on \p CB
950 bool supportsTailCallFor(const CallBase *CB) const;
951
952 /// Don't restrict interleaved unrolling to small loops.
953 bool enableAggressiveInterleaving(bool LoopHasReductions) const;
954
955 /// Returns options for expansion of memcmp. IsZeroCmp is
956 // true if this is the expansion of memcmp(p1, p2, s) == 0.
958 // Return true if memcmp expansion is enabled.
959 operator bool() const { return MaxNumLoads > 0; }
960
961 // Maximum number of load operations.
962 unsigned MaxNumLoads = 0;
963
964 // The list of available load sizes (in bytes), sorted in decreasing order.
966
967 // For memcmp expansion when the memcmp result is only compared equal or
968 // not-equal to 0, allow up to this number of load pairs per block. As an
969 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
970 // a0 = load2bytes &a[0]
971 // b0 = load2bytes &b[0]
972 // a2 = load1byte &a[2]
973 // b2 = load1byte &b[2]
974 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
975 unsigned NumLoadsPerBlock = 1;
976
977 // Set to true to allow overlapping loads. For example, 7-byte compares can
978 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
979 // requires all loads in LoadSizes to be doable in an unaligned way.
981
982 // Sometimes, the amount of data that needs to be compared is smaller than
983 // the standard register size, but it cannot be loaded with just one load
984 // instruction. For example, if the size of the memory comparison is 6
985 // bytes, we can handle it more efficiently by loading all 6 bytes in a
986 // single block and generating an 8-byte number, instead of generating two
987 // separate blocks with conditional jumps for 4 and 2 byte loads. This
988 // approach simplifies the process and produces the comparison result as
989 // normal. This array lists the allowed sizes of memcmp tails that can be
990 // merged into one block
992 };
994 bool IsZeroCmp) const;
995
996 /// Should the Select Optimization pass be enabled and ran.
997 bool enableSelectOptimize() const;
998
999 /// Should the Select Optimization pass treat the given instruction like a
1000 /// select, potentially converting it to a conditional branch. This can
1001 /// include select-like instructions like or(zext(c), x) that can be converted
1002 /// to selects.
1004
1005 /// Enable matching of interleaved access groups.
1007
1008 /// Enable matching of interleaved access groups that contain predicated
1009 /// accesses or gaps and therefore vectorized using masked
1010 /// vector loads/stores.
1012
1013 /// Indicate that it is potentially unsafe to automatically vectorize
1014 /// floating-point operations because the semantics of vector and scalar
1015 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
1016 /// does not support IEEE-754 denormal numbers, while depending on the
1017 /// platform, scalar floating-point math does.
1018 /// This applies to floating-point math operations and calls, not memory
1019 /// operations, shuffles, or casts.
1021
1022 /// Determine if the target supports unaligned memory accesses.
1023 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
1024 unsigned AddressSpace = 0,
1025 Align Alignment = Align(1),
1026 unsigned *Fast = nullptr) const;
1027
1028 /// Return hardware support for population count.
1029 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
1030
1031 /// Return true if the hardware has a fast square-root instruction.
1032 bool haveFastSqrt(Type *Ty) const;
1033
1034 /// Return true if the cost of the instruction is too high to speculatively
1035 /// execute and should be kept behind a branch.
1036 /// This normally just wraps around a getInstructionCost() call, but some
1037 /// targets might report a low TCK_SizeAndLatency value that is incompatible
1038 /// with the fixed TCC_Expensive value.
1039 /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
1041
1042 /// Return true if it is faster to check if a floating-point value is NaN
1043 /// (or not-NaN) versus a comparison against a constant FP zero value.
1044 /// Targets should override this if materializing a 0.0 for comparison is
1045 /// generally as cheap as checking for ordered/unordered.
1046 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
1047
1048 /// Return the expected cost of supporting the floating point operation
1049 /// of the specified type.
1050 InstructionCost getFPOpCost(Type *Ty) const;
1051
1052 /// Return the expected cost of materializing for the given integer
1053 /// immediate of the specified type.
1054 InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
1055 TargetCostKind CostKind) const;
1056
1057 /// Return the expected cost of materialization for the given integer
1058 /// immediate of the specified type for a given instruction. The cost can be
1059 /// zero if the immediate can be folded into the specified instruction.
1060 InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1061 const APInt &Imm, Type *Ty,
1063 Instruction *Inst = nullptr) const;
1065 const APInt &Imm, Type *Ty,
1066 TargetCostKind CostKind) const;
1067
1068 /// Return the expected cost for the given integer when optimising
1069 /// for size. This is different than the other integer immediate cost
1070 /// functions in that it is subtarget agnostic. This is useful when you e.g.
1071 /// target one ISA such as Aarch32 but smaller encodings could be possible
1072 /// with another such as Thumb. This return value is used as a penalty when
1073 /// the total costs for a constant is calculated (the bigger the cost, the
1074 /// more beneficial constant hoisting is).
1075 InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1076 const APInt &Imm, Type *Ty) const;
1077
1078 /// It can be advantageous to detach complex constants from their uses to make
1079 /// their generation cheaper. This hook allows targets to report when such
1080 /// transformations might negatively effect the code generation of the
1081 /// underlying operation. The motivating example is divides whereby hoisting
1082 /// constants prevents the code generator's ability to transform them into
1083 /// combinations of simpler operations.
1085 const Function &Fn) const;
1086
1087 /// @}
1088
1089 /// \name Vector Target Information
1090 /// @{
1091
1092 /// The various kinds of shuffle patterns for vector queries.
1094 SK_Broadcast, ///< Broadcast element 0 to all other elements.
1095 SK_Reverse, ///< Reverse the order of the vector.
1096 SK_Select, ///< Selects elements from the corresponding lane of
1097 ///< either source operand. This is equivalent to a
1098 ///< vector select with a constant condition operand.
1099 SK_Transpose, ///< Transpose two vectors.
1100 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
1101 SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
1102 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
1103 ///< with any shuffle mask.
1104 SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
1105 ///< shuffle mask.
1106 SK_Splice ///< Concatenates elements from the first input vector
1107 ///< with elements of the second input vector. Returning
1108 ///< a vector of the same type as the input vectors.
1109 ///< Index indicates start offset in first input vector.
1111
1112 /// Additional information about an operand's possible values.
1114 OK_AnyValue, // Operand can have any value.
1115 OK_UniformValue, // Operand is uniform (splat of a value).
1116 OK_UniformConstantValue, // Operand is uniform constant.
1117 OK_NonUniformConstantValue // Operand is a non uniform constant value.
1119
1120 /// Additional properties of an operand's values.
1125 };
1126
1127 // Describe the values an operand can take. We're in the process
1128 // of migrating uses of OperandValueKind and OperandValueProperties
1129 // to use this class, and then will change the internal representation.
1133
1134 bool isConstant() const {
1136 }
1137 bool isUniform() const {
1139 }
1140 bool isPowerOf2() const {
1141 return Properties == OP_PowerOf2;
1142 }
1143 bool isNegatedPowerOf2() const {
1145 }
1146
1148 return {Kind, OP_None};
1149 }
1150 };
1151
1152 /// \return the number of registers in the target-provided register class.
1153 unsigned getNumberOfRegisters(unsigned ClassID) const;
1154
1155 /// \return true if the target supports load/store that enables fault
1156 /// suppression of memory operands when the source condition is false.
1157 bool hasConditionalLoadStoreForType(Type *Ty = nullptr) const;
1158
1159 /// \return the target-provided register class ID for the provided type,
1160 /// accounting for type promotion and other type-legalization techniques that
1161 /// the target might apply. However, it specifically does not account for the
1162 /// scalarization or splitting of vector types. Should a vector type require
1163 /// scalarization or splitting into multiple underlying vector registers, that
1164 /// type should be mapped to a register class containing no registers.
1165 /// Specifically, this is designed to provide a simple, high-level view of the
1166 /// register allocation later performed by the backend. These register classes
1167 /// don't necessarily map onto the register classes used by the backend.
1168 /// FIXME: It's not currently possible to determine how many registers
1169 /// are used by the provided type.
1170 unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
1171
1172 /// \return the target-provided register class name
1173 const char *getRegisterClassName(unsigned ClassID) const;
1174
1176
1177 /// \return The width of the largest scalar or vector register type.
1179
1180 /// \return The width of the smallest vector register type.
1181 unsigned getMinVectorRegisterBitWidth() const;
1182
1183 /// \return The maximum value of vscale if the target specifies an
1184 /// architectural maximum vector length, and std::nullopt otherwise.
1185 std::optional<unsigned> getMaxVScale() const;
1186
1187 /// \return the value of vscale to tune the cost model for.
1188 std::optional<unsigned> getVScaleForTuning() const;
1189
1190 /// \return true if vscale is known to be a power of 2
1191 bool isVScaleKnownToBeAPowerOfTwo() const;
1192
1193 /// \return True if the vectorization factor should be chosen to
1194 /// make the vector of the smallest element type match the size of a
1195 /// vector register. For wider element types, this could result in
1196 /// creating vectors that span multiple vector registers.
1197 /// If false, the vectorization factor will be chosen based on the
1198 /// size of the widest element type.
1199 /// \p K Register Kind for vectorization.
1201
1202 /// \return The minimum vectorization factor for types of given element
1203 /// bit width, or 0 if there is no minimum VF. The returned value only
1204 /// applies when shouldMaximizeVectorBandwidth returns true.
1205 /// If IsScalable is true, the returned ElementCount must be a scalable VF.
1206 ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
1207
1208 /// \return The maximum vectorization factor for types of given element
1209 /// bit width and opcode, or 0 if there is no maximum VF.
1210 /// Currently only used by the SLP vectorizer.
1211 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
1212
1213 /// \return The minimum vectorization factor for the store instruction. Given
1214 /// the initial estimation of the minimum vector factor and store value type,
1215 /// it tries to find possible lowest VF, which still might be profitable for
1216 /// the vectorization.
1217 /// \param VF Initial estimation of the minimum vector factor.
1218 /// \param ScalarMemTy Scalar memory type of the store operation.
1219 /// \param ScalarValTy Scalar type of the stored value.
1220 /// Currently only used by the SLP vectorizer.
1221 unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1222 Type *ScalarValTy) const;
1223
1224 /// \return True if it should be considered for address type promotion.
1225 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
1226 /// profitable without finding other extensions fed by the same input.
1228 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
1229
1230 /// \return The size of a cache line in bytes.
1231 unsigned getCacheLineSize() const;
1232
1233 /// The possible cache levels
1234 enum class CacheLevel {
1235 L1D, // The L1 data cache
1236 L2D, // The L2 data cache
1237
1238 // We currently do not model L3 caches, as their sizes differ widely between
1239 // microarchitectures. Also, we currently do not have a use for L3 cache
1240 // size modeling yet.
1241 };
1242
1243 /// \return The size of the cache level in bytes, if available.
1244 std::optional<unsigned> getCacheSize(CacheLevel Level) const;
1245
1246 /// \return The associativity of the cache level, if available.
1247 std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
1248
1249 /// \return The minimum architectural page size for the target.
1250 std::optional<unsigned> getMinPageSize() const;
1251
1252 /// \return How much before a load we should place the prefetch
1253 /// instruction. This is currently measured in number of
1254 /// instructions.
1255 unsigned getPrefetchDistance() const;
1256
1257 /// Some HW prefetchers can handle accesses up to a certain constant stride.
1258 /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
1259 /// and the arguments provided are meant to serve as a basis for deciding this
1260 /// for a particular loop.
1261 ///
1262 /// \param NumMemAccesses Number of memory accesses in the loop.
1263 /// \param NumStridedMemAccesses Number of the memory accesses that
1264 /// ScalarEvolution could find a known stride
1265 /// for.
1266 /// \param NumPrefetches Number of software prefetches that will be
1267 /// emitted as determined by the addresses
1268 /// involved and the cache line size.
1269 /// \param HasCall True if the loop contains a call.
1270 ///
1271 /// \return This is the minimum stride in bytes where it makes sense to start
1272 /// adding SW prefetches. The default is 1, i.e. prefetch with any
1273 /// stride.
1274 unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1275 unsigned NumStridedMemAccesses,
1276 unsigned NumPrefetches, bool HasCall) const;
1277
1278 /// \return The maximum number of iterations to prefetch ahead. If
1279 /// the required number of iterations is more than this number, no
1280 /// prefetching is performed.
1281 unsigned getMaxPrefetchIterationsAhead() const;
1282
1283 /// \return True if prefetching should also be done for writes.
1284 bool enableWritePrefetching() const;
1285
1286 /// \return if target want to issue a prefetch in address space \p AS.
1287 bool shouldPrefetchAddressSpace(unsigned AS) const;
1288
1289 /// \return The cost of a partial reduction, which is a reduction from a
1290 /// vector to another vector with fewer elements of larger size. They are
1291 /// represented by the llvm.experimental.partial.reduce.add intrinsic, which
1292 /// takes an accumulator and a binary operation operand that itself is fed by
1293 /// two extends. An example of an operation that uses a partial reduction is a
1294 /// dot product, which reduces two vectors to another of 4 times fewer and 4
1295 /// times larger elements.
1297 getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB,
1298 Type *AccumType, ElementCount VF,
1301 std::optional<unsigned> BinOp = std::nullopt) const;
1302
1303 /// \return The maximum interleave factor that any transform should try to
1304 /// perform for this target. This number depends on the level of parallelism
1305 /// and the number of execution units in the CPU.
1306 unsigned getMaxInterleaveFactor(ElementCount VF) const;
1307
1308 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1309 static OperandValueInfo getOperandInfo(const Value *V);
1310
1311 /// This is an approximation of reciprocal throughput of a math/logic op.
1312 /// A higher cost indicates less expected throughput.
1313 /// From Agner Fog's guides, reciprocal throughput is "the average number of
1314 /// clock cycles per instruction when the instructions are not part of a
1315 /// limiting dependency chain."
1316 /// Therefore, costs should be scaled to account for multiple execution units
1317 /// on the target that can process this type of instruction. For example, if
1318 /// there are 5 scalar integer units and 2 vector integer units that can
1319 /// calculate an 'add' in a single cycle, this model should indicate that the
1320 /// cost of the vector add instruction is 2.5 times the cost of the scalar
1321 /// add instruction.
1322 /// \p Args is an optional argument which holds the instruction operands
1323 /// values so the TTI can analyze those values searching for special
1324 /// cases or optimizations based on those values.
1325 /// \p CxtI is the optional original context instruction, if one exists, to
1326 /// provide even more information.
1327 /// \p TLibInfo is used to search for platform specific vector library
1328 /// functions for instructions that might be converted to calls (e.g. frem).
1330 unsigned Opcode, Type *Ty,
1333 TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
1334 ArrayRef<const Value *> Args = {}, const Instruction *CxtI = nullptr,
1335 const TargetLibraryInfo *TLibInfo = nullptr) const;
1336
1337 /// Returns the cost estimation for alternating opcode pattern that can be
1338 /// lowered to a single instruction on the target. In X86 this is for the
1339 /// addsub instruction which corrsponds to a Shuffle + Fadd + FSub pattern in
1340 /// IR. This function expects two opcodes: \p Opcode1 and \p Opcode2 being
1341 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
1342 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
1343 /// \p VecTy is the vector type of the instruction to be generated.
1344 InstructionCost getAltInstrCost(
1345 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
1346 const SmallBitVector &OpcodeMask,
1348
1349 /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
1350 /// The exact mask may be passed as Mask, or else the array will be empty.
1351 /// The index and subtype parameters are used by the subvector insertion and
1352 /// extraction shuffle kinds to show the insert/extract point and the type of
1353 /// the subvector being inserted/extracted. The operands of the shuffle can be
1354 /// passed through \p Args, which helps improve the cost estimation in some
1355 /// cases, like in broadcast loads.
1356 /// NOTE: For subvector extractions Tp represents the source type.
1357 InstructionCost
1358 getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask = {},
1360 int Index = 0, VectorType *SubTp = nullptr,
1361 ArrayRef<const Value *> Args = {},
1362 const Instruction *CxtI = nullptr) const;
1363
1364 /// Represents a hint about the context in which a cast is used.
1365 ///
1366 /// For zext/sext, the context of the cast is the operand, which must be a
1367 /// load of some kind. For trunc, the context is of the cast is the single
1368 /// user of the instruction, which must be a store of some kind.
1369 ///
1370 /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1371 /// type of cast it's dealing with, as not every cast is equal. For instance,
1372 /// the zext of a load may be free, but the zext of an interleaving load can
1373 //// be (very) expensive!
1374 ///
1375 /// See \c getCastContextHint to compute a CastContextHint from a cast
1376 /// Instruction*. Callers can use it if they don't need to override the
1377 /// context and just want it to be calculated from the instruction.
1378 ///
1379 /// FIXME: This handles the types of load/store that the vectorizer can
1380 /// produce, which are the cases where the context instruction is most
1381 /// likely to be incorrect. There are other situations where that can happen
1382 /// too, which might be handled here but in the long run a more general
1383 /// solution of costing multiple instructions at the same times may be better.
1385 None, ///< The cast is not used with a load/store of any kind.
1386 Normal, ///< The cast is used with a normal load/store.
1387 Masked, ///< The cast is used with a masked load/store.
1388 GatherScatter, ///< The cast is used with a gather/scatter.
1389 Interleave, ///< The cast is used with an interleaved load/store.
1390 Reversed, ///< The cast is used with a reversed load/store.
1391 };
1392
1393 /// Calculates a CastContextHint from \p I.
1394 /// This should be used by callers of getCastInstrCost if they wish to
1395 /// determine the context from some instruction.
1396 /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1397 /// or if it's another type of cast.
1399
1400 /// \return The expected cost of cast instructions, such as bitcast, trunc,
1401 /// zext, etc. If there is an existing instruction that holds Opcode, it
1402 /// may be passed in the 'I' parameter.
1404 getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1407 const Instruction *I = nullptr) const;
1408
1409 /// \return The expected cost of a sign- or zero-extended vector extract. Use
1410 /// Index = -1 to indicate that there is no information about the index value.
1411 InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1412 VectorType *VecTy,
1413 unsigned Index) const;
1414
1415 /// \return The expected cost of control-flow related instructions such as
1416 /// Phi, Ret, Br, Switch.
1418 getCFInstrCost(unsigned Opcode,
1420 const Instruction *I = nullptr) const;
1421
1422 /// \returns The expected cost of compare and select instructions. If there
1423 /// is an existing instruction that holds Opcode, it may be passed in the
1424 /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1425 /// is using a compare with the specified predicate as condition. When vector
1426 /// types are passed, \p VecPred must be used for all lanes. For a
1427 /// comparison, the two operands are the natural values. For a select, the
1428 /// two operands are the *value* operands, not the condition operand.
1430 getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1431 CmpInst::Predicate VecPred,
1433 OperandValueInfo Op1Info = {OK_AnyValue, OP_None},
1434 OperandValueInfo Op2Info = {OK_AnyValue, OP_None},
1435 const Instruction *I = nullptr) const;
1436
1437 /// \return The expected cost of vector Insert and Extract.
1438 /// Use -1 to indicate that there is no information on the index value.
1439 /// This is used when the instruction is not available; a typical use
1440 /// case is to provision the cost of vectorization/scalarization in
1441 /// vectorizer passes.
1442 InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1444 unsigned Index = -1, Value *Op0 = nullptr,
1445 Value *Op1 = nullptr) const;
1446
1447 /// \return The expected cost of vector Insert and Extract.
1448 /// Use -1 to indicate that there is no information on the index value.
1449 /// This is used when the instruction is not available; a typical use
1450 /// case is to provision the cost of vectorization/scalarization in
1451 /// vectorizer passes.
1452 /// \param ScalarUserAndIdx encodes the information about extracts from a
1453 /// vector with 'Scalar' being the value being extracted,'User' being the user
1454 /// of the extract(nullptr if user is not known before vectorization) and
1455 /// 'Idx' being the extract lane.
1456 InstructionCost getVectorInstrCost(
1457 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
1458 Value *Scalar,
1459 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) const;
1460
1461 /// \return The expected cost of vector Insert and Extract.
1462 /// This is used when instruction is available, and implementation
1463 /// asserts 'I' is not nullptr.
1464 ///
1465 /// A typical suitable use case is cost estimation when vector instruction
1466 /// exists (e.g., from basic blocks during transformation).
1467 InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1469 unsigned Index = -1) const;
1470
1471 /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
1472 /// \p ReplicationFactor times.
1473 ///
1474 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
1475 /// <0,0,0,1,1,1,2,2,2,3,3,3>
1476 InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
1477 int VF,
1478 const APInt &DemandedDstElts,
1480
1481 /// \return The cost of Load and Store instructions.
1482 InstructionCost
1483 getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1484 unsigned AddressSpace,
1486 OperandValueInfo OpdInfo = {OK_AnyValue, OP_None},
1487 const Instruction *I = nullptr) const;
1488
1489 /// \return The cost of VP Load and Store instructions.
1490 InstructionCost
1491 getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1492 unsigned AddressSpace,
1494 const Instruction *I = nullptr) const;
1495
1496 /// \return The cost of masked Load and Store instructions.
1498 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1500
1501 /// \return The cost of Gather or Scatter operation
1502 /// \p Opcode - is a type of memory access Load or Store
1503 /// \p DataTy - a vector type of the data to be loaded or stored
1504 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1505 /// \p VariableMask - true when the memory access is predicated with a mask
1506 /// that is not a compile-time constant
1507 /// \p Alignment - alignment of single element
1508 /// \p I - the optional original context instruction, if one exists, e.g. the
1509 /// load/store to transform or the call to the gather/scatter intrinsic
1511 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1513 const Instruction *I = nullptr) const;
1514
1515 /// \return The cost of strided memory operations.
1516 /// \p Opcode - is a type of memory access Load or Store
1517 /// \p DataTy - a vector type of the data to be loaded or stored
1518 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1519 /// \p VariableMask - true when the memory access is predicated with a mask
1520 /// that is not a compile-time constant
1521 /// \p Alignment - alignment of single element
1522 /// \p I - the optional original context instruction, if one exists, e.g. the
1523 /// load/store to transform or the call to the gather/scatter intrinsic
1525 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1527 const Instruction *I = nullptr) const;
1528
1529 /// \return The cost of the interleaved memory operation.
1530 /// \p Opcode is the memory operation code
1531 /// \p VecTy is the vector type of the interleaved access.
1532 /// \p Factor is the interleave factor
1533 /// \p Indices is the indices for interleaved load members (as interleaved
1534 /// load allows gaps)
1535 /// \p Alignment is the alignment of the memory operation
1536 /// \p AddressSpace is address space of the pointer.
1537 /// \p UseMaskForCond indicates if the memory access is predicated.
1538 /// \p UseMaskForGaps indicates if gaps should be masked.
1540 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1541 Align Alignment, unsigned AddressSpace,
1543 bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1544
1545 /// A helper function to determine the type of reduction algorithm used
1546 /// for a given \p Opcode and set of FastMathFlags \p FMF.
1547 static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
1548 return FMF && !(*FMF).allowReassoc();
1549 }
1550
1551 /// Calculate the cost of vector reduction intrinsics.
1552 ///
1553 /// This is the cost of reducing the vector value of type \p Ty to a scalar
1554 /// value using the operation denoted by \p Opcode. The FastMathFlags
1555 /// parameter \p FMF indicates what type of reduction we are performing:
1556 /// 1. Tree-wise. This is the typical 'fast' reduction performed that
1557 /// involves successively splitting a vector into half and doing the
1558 /// operation on the pair of halves until you have a scalar value. For
1559 /// example:
1560 /// (v0, v1, v2, v3)
1561 /// ((v0+v2), (v1+v3), undef, undef)
1562 /// ((v0+v2+v1+v3), undef, undef, undef)
1563 /// This is the default behaviour for integer operations, whereas for
1564 /// floating point we only do this if \p FMF indicates that
1565 /// reassociation is allowed.
1566 /// 2. Ordered. For a vector with N elements this involves performing N
1567 /// operations in lane order, starting with an initial scalar value, i.e.
1568 /// result = InitVal + v0
1569 /// result = result + v1
1570 /// result = result + v2
1571 /// result = result + v3
1572 /// This is only the case for FP operations and when reassociation is not
1573 /// allowed.
1574 ///
1576 unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1578
1582
1583 /// Calculate the cost of an extended reduction pattern, similar to
1584 /// getArithmeticReductionCost of an Add reduction with multiply and optional
1585 /// extensions. This is the cost of as:
1586 /// ResTy vecreduce.add(mul (A, B)).
1587 /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)).
1589 bool IsUnsigned, Type *ResTy, VectorType *Ty,
1591
1592 /// Calculate the cost of an extended reduction pattern, similar to
1593 /// getArithmeticReductionCost of a reduction with an extension.
1594 /// This is the cost of as:
1595 /// ResTy vecreduce.opcode(ext(Ty A)).
1597 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1598 FastMathFlags FMF,
1600
1601 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1602 /// Three cases are handled: 1. scalar instruction 2. vector instruction
1603 /// 3. scalar instruction which is to be vectorized.
1606
1607 /// \returns The cost of Call instructions.
1611
1612 /// \returns The number of pieces into which the provided type must be
1613 /// split during legalization. Zero is returned when the answer is unknown.
1614 unsigned getNumberOfParts(Type *Tp) const;
1615
1616 /// \returns The cost of the address computation. For most targets this can be
1617 /// merged into the instruction indexing mode. Some targets might want to
1618 /// distinguish between address computation for memory operations on vector
1619 /// types and scalar types. Such targets should override this function.
1620 /// The 'SE' parameter holds pointer for the scalar evolution object which
1621 /// is used in order to get the Ptr step value in case of constant stride.
1622 /// The 'Ptr' parameter holds SCEV of the access pointer.
1624 ScalarEvolution *SE = nullptr,
1625 const SCEV *Ptr = nullptr) const;
1626
1627 /// \returns The cost, if any, of keeping values of the given types alive
1628 /// over a callsite.
1629 ///
1630 /// Some types may require the use of register classes that do not have
1631 /// any callee-saved registers, so would require a spill and fill.
1633
1634 /// \returns True if the intrinsic is a supported memory intrinsic. Info
1635 /// will contain additional information - whether the intrinsic may write
1636 /// or read to memory, volatility and the pointer. Info is undefined
1637 /// if false is returned.
1639
1640 /// \returns The maximum element size, in bytes, for an element
1641 /// unordered-atomic memory intrinsic.
1642 unsigned getAtomicMemIntrinsicMaxElementSize() const;
1643
1644 /// \returns A value which is the result of the given memory intrinsic. New
1645 /// instructions may be created to extract the result from the given intrinsic
1646 /// memory operation. Returns nullptr if the target cannot create a result
1647 /// from the given intrinsic.
1649 Type *ExpectedType) const;
1650
1651 /// \returns The type to use in a loop expansion of a memcpy call.
1653 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1654 unsigned DestAddrSpace, Align SrcAlign, Align DestAlign,
1655 std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
1656
1657 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1658 /// \param RemainingBytes The number of bytes to copy.
1659 ///
1660 /// Calculates the operand types to use when copying \p RemainingBytes of
1661 /// memory, where source and destination alignments are \p SrcAlign and
1662 /// \p DestAlign respectively.
1664 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1665 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1666 Align SrcAlign, Align DestAlign,
1667 std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
1668
1669 /// \returns True if the two functions have compatible attributes for inlining
1670 /// purposes.
1671 bool areInlineCompatible(const Function *Caller,
1672 const Function *Callee) const;
1673
1674 /// Returns a penalty for invoking call \p Call in \p F.
1675 /// For example, if a function F calls a function G, which in turn calls
1676 /// function H, then getInlineCallPenalty(F, H()) would return the
1677 /// penalty of calling H from F, e.g. after inlining G into F.
1678 /// \p DefaultCallPenalty is passed to give a default penalty that
1679 /// the target can amend or override.
1680 unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
1681 unsigned DefaultCallPenalty) const;
1682
1683 /// \returns True if the caller and callee agree on how \p Types will be
1684 /// passed to or returned from the callee.
1685 /// to the callee.
1686 /// \param Types List of types to check.
1687 bool areTypesABICompatible(const Function *Caller, const Function *Callee,
1688 const ArrayRef<Type *> &Types) const;
1689
1690 /// The type of load/store indexing.
1692 MIM_Unindexed, ///< No indexing.
1693 MIM_PreInc, ///< Pre-incrementing.
1694 MIM_PreDec, ///< Pre-decrementing.
1695 MIM_PostInc, ///< Post-incrementing.
1696 MIM_PostDec ///< Post-decrementing.
1698
1699 /// \returns True if the specified indexed load for the given type is legal.
1700 bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1701
1702 /// \returns True if the specified indexed store for the given type is legal.
1703 bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1704
1705 /// \returns The bitwidth of the largest vector type that should be used to
1706 /// load/store in the given address space.
1707 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1708
1709 /// \returns True if the load instruction is legal to vectorize.
1710 bool isLegalToVectorizeLoad(LoadInst *LI) const;
1711
1712 /// \returns True if the store instruction is legal to vectorize.
1713 bool isLegalToVectorizeStore(StoreInst *SI) const;
1714
1715 /// \returns True if it is legal to vectorize the given load chain.
1716 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
1717 unsigned AddrSpace) const;
1718
1719 /// \returns True if it is legal to vectorize the given store chain.
1720 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
1721 unsigned AddrSpace) const;
1722
1723 /// \returns True if it is legal to vectorize the given reduction kind.
1725 ElementCount VF) const;
1726
1727 /// \returns True if the given type is supported for scalable vectors
1729
1730 /// \returns The new vector factor value if the target doesn't support \p
1731 /// SizeInBytes loads or has a better vector factor.
1732 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1733 unsigned ChainSizeInBytes,
1734 VectorType *VecTy) const;
1735
1736 /// \returns The new vector factor value if the target doesn't support \p
1737 /// SizeInBytes stores or has a better vector factor.
1738 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1739 unsigned ChainSizeInBytes,
1740 VectorType *VecTy) const;
1741
1742 /// Flags describing the kind of vector reduction.
1744 ReductionFlags() = default;
1745 bool IsMaxOp =
1746 false; ///< If the op a min/max kind, true if it's a max operation.
1747 bool IsSigned = false; ///< Whether the operation is a signed int reduction.
1748 bool NoNaN =
1749 false; ///< If op is an fp min/max, whether NaNs may be present.
1750 };
1751
1752 /// \returns True if the targets prefers fixed width vectorization if the
1753 /// loop vectorizer's cost-model assigns an equal cost to the fixed and
1754 /// scalable version of the vectorized loop.
1756
1757 /// \returns True if the target prefers reductions in loop.
1758 bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1759 ReductionFlags Flags) const;
1760
1761 /// \returns True if the target prefers reductions select kept in the loop
1762 /// when tail folding. i.e.
1763 /// loop:
1764 /// p = phi (0, s)
1765 /// a = add (p, x)
1766 /// s = select (mask, a, p)
1767 /// vecreduce.add(s)
1768 ///
1769 /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1770 /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1771 /// by the target, this can lead to cleaner code generation.
1772 bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1773 ReductionFlags Flags) const;
1774
1775 /// Return true if the loop vectorizer should consider vectorizing an
1776 /// otherwise scalar epilogue loop.
1777 bool preferEpilogueVectorization() const;
1778
1779 /// \returns True if the target wants to expand the given reduction intrinsic
1780 /// into a shuffle sequence.
1781 bool shouldExpandReduction(const IntrinsicInst *II) const;
1782
1784
1785 /// \returns The shuffle sequence pattern used to expand the given reduction
1786 /// intrinsic.
1789
1790 /// \returns the size cost of rematerializing a GlobalValue address relative
1791 /// to a stack reload.
1792 unsigned getGISelRematGlobalCost() const;
1793
1794 /// \returns the lower bound of a trip count to decide on vectorization
1795 /// while tail-folding.
1796 unsigned getMinTripCountTailFoldingThreshold() const;
1797
1798 /// \returns True if the target supports scalable vectors.
1799 bool supportsScalableVectors() const;
1800
1801 /// \return true when scalable vectorization is preferred.
1802 bool enableScalableVectorization() const;
1803
1804 /// \name Vector Predication Information
1805 /// @{
1806 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1807 /// in hardware, for the given opcode and type/alignment. (see LLVM Language
1808 /// Reference - "Vector Predication Intrinsics").
1809 /// Use of %evl is discouraged when that is not the case.
1810 bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
1811 Align Alignment) const;
1812
1813 /// Return true if sinking I's operands to the same basic block as I is
1814 /// profitable, e.g. because the operands can be folded into a target
1815 /// instruction during instruction selection. After calling the function
1816 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
1817 /// come first).
1819 SmallVectorImpl<Use *> &Ops) const;
1820
1821 /// Return true if it's significantly cheaper to shift a vector by a uniform
1822 /// scalar than by an amount which will vary across each lane. On x86 before
1823 /// AVX2 for example, there is a "psllw" instruction for the former case, but
1824 /// no simple instruction for a general "a << b" operation on vectors.
1825 /// This should also apply to lowering for vector funnel shifts (rotates).
1826 bool isVectorShiftByScalarCheap(Type *Ty) const;
1827
1830 // keep the predicating parameter
1832 // where legal, discard the predicate parameter
1834 // transform into something else that is also predicating
1835 Convert = 2
1837
1838 // How to transform the EVL parameter.
1839 // Legal: keep the EVL parameter as it is.
1840 // Discard: Ignore the EVL parameter where it is safe to do so.
1841 // Convert: Fold the EVL into the mask parameter.
1843
1844 // How to transform the operator.
1845 // Legal: The target supports this operator.
1846 // Convert: Convert this to a non-VP operation.
1847 // The 'Discard' strategy is invalid.
1849
1850 bool shouldDoNothing() const {
1851 return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
1852 }
1855 };
1856
1857 /// \returns How the target needs this vector-predicated operation to be
1858 /// transformed.
1860 /// @}
1861
1862 /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb
1863 /// state.
1864 ///
1865 /// Used by the LowerTypeTests pass, which constructs an IR inline assembler
1866 /// node containing a jump table in a format suitable for the target, so it
1867 /// needs to know what format of jump table it can legally use.
1868 ///
1869 /// For non-Arm targets, this function isn't used. It defaults to returning
1870 /// false, but it shouldn't matter what it returns anyway.
1871 bool hasArmWideBranch(bool Thumb) const;
1872
1873 /// Returns a bitmask constructed from the target-features or fmv-features
1874 /// metadata of a function.
1875 uint64_t getFeatureMask(const Function &F) const;
1876
1877 /// Returns true if this is an instance of a function with multiple versions.
1878 bool isMultiversionedFunction(const Function &F) const;
1879
1880 /// \return The maximum number of function arguments the target supports.
1881 unsigned getMaxNumArgs() const;
1882
1883 /// \return For an array of given Size, return alignment boundary to
1884 /// pad to. Default is no padding.
1885 unsigned getNumBytesToPadGlobalArray(unsigned Size, Type *ArrayType) const;
1886
1887 /// @}
1888
1889private:
1890 /// The abstract base class used to type erase specific TTI
1891 /// implementations.
1892 class Concept;
1893
1894 /// The template model for the base class which wraps a concrete
1895 /// implementation in a type erased interface.
1896 template <typename T> class Model;
1897
1898 std::unique_ptr<Concept> TTIImpl;
1899};
1900
1902public:
1903 virtual ~Concept() = 0;
1904 virtual const DataLayout &getDataLayout() const = 0;
1905 virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
1907 Type *AccessType,
1909 virtual InstructionCost
1911 const TTI::PointersChainInfo &Info, Type *AccessTy,
1913 virtual unsigned getInliningThresholdMultiplier() const = 0;
1915 virtual unsigned
1917 virtual int getInliningLastCallToStaticBonus() const = 0;
1918 virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
1919 virtual int getInlinerVectorBonusPercent() const = 0;
1920 virtual unsigned getCallerAllocaCost(const CallBase *CB,
1921 const AllocaInst *AI) const = 0;
1924 virtual unsigned
1926 ProfileSummaryInfo *PSI,
1927 BlockFrequencyInfo *BFI) = 0;
1933 virtual bool hasBranchDivergence(const Function *F = nullptr) = 0;
1934 virtual bool isSourceOfDivergence(const Value *V) = 0;
1935 virtual bool isAlwaysUniform(const Value *V) = 0;
1936 virtual bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1937 virtual bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const = 0;
1938 virtual unsigned getFlatAddressSpace() = 0;
1940 Intrinsic::ID IID) const = 0;
1941 virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1942 virtual bool
1944 virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
1945 virtual bool isSingleThreaded() const = 0;
1946 virtual std::pair<const Value *, unsigned>
1947 getPredicatedAddrSpace(const Value *V) const = 0;
1949 Value *OldV,
1950 Value *NewV) const = 0;
1951 virtual bool isLoweredToCall(const Function *F) = 0;
1954 OptimizationRemarkEmitter *ORE) = 0;
1956 PeelingPreferences &PP) = 0;
1958 AssumptionCache &AC,
1959 TargetLibraryInfo *LibInfo,
1960 HardwareLoopInfo &HWLoopInfo) = 0;
1961 virtual unsigned getEpilogueVectorizationMinVF() = 0;
1963 virtual TailFoldingStyle
1964 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) = 0;
1965 virtual std::optional<Instruction *> instCombineIntrinsic(
1966 InstCombiner &IC, IntrinsicInst &II) = 0;
1967 virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
1968 InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask,
1969 KnownBits & Known, bool &KnownBitsComputed) = 0;
1970 virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1971 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts,
1972 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
1973 std::function<void(Instruction *, unsigned, APInt, APInt &)>
1974 SimplifyAndSetOp) = 0;
1975 virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1976 virtual bool isLegalAddScalableImmediate(int64_t Imm) = 0;
1977 virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1978 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1979 int64_t BaseOffset, bool HasBaseReg,
1980 int64_t Scale, unsigned AddrSpace,
1981 Instruction *I,
1982 int64_t ScalableOffset) = 0;
1984 const TargetTransformInfo::LSRCost &C2) = 0;
1985 virtual bool isNumRegsMajorCostOfLSR() = 0;
1988 virtual bool canMacroFuseCmp() = 0;
1989 virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1991 TargetLibraryInfo *LibInfo) = 0;
1992 virtual AddressingModeKind
1994 virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
1995 virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
1996 virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
1997 virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
1998 virtual bool isLegalBroadcastLoad(Type *ElementTy,
1999 ElementCount NumElements) const = 0;
2000 virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
2001 virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
2003 Align Alignment) = 0;
2005 Align Alignment) = 0;
2006 virtual bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) = 0;
2007 virtual bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) = 0;
2008 virtual bool isLegalStridedLoadStore(Type *DataType, Align Alignment) = 0;
2009 virtual bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
2010 Align Alignment,
2011 unsigned AddrSpace) = 0;
2012
2013 virtual bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) = 0;
2014 virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
2015 unsigned Opcode1,
2016 const SmallBitVector &OpcodeMask) const = 0;
2017 virtual bool enableOrderedReductions() = 0;
2018 virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
2019 virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
2022 StackOffset BaseOffset,
2023 bool HasBaseReg, int64_t Scale,
2024 unsigned AddrSpace) = 0;
2025 virtual bool LSRWithInstrQueries() = 0;
2026 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
2028 virtual bool useAA() = 0;
2029 virtual bool isTypeLegal(Type *Ty) = 0;
2030 virtual unsigned getRegUsageForType(Type *Ty) = 0;
2031 virtual bool shouldBuildLookupTables() = 0;
2033 virtual bool shouldBuildRelLookupTables() = 0;
2034 virtual bool useColdCCForColdCall(Function &F) = 0;
2037 unsigned ScalarOpdIdx) = 0;
2039 int OpdIdx) = 0;
2040 virtual bool
2042 int RetIdx) = 0;
2043 virtual InstructionCost
2045 bool Insert, bool Extract, TargetCostKind CostKind,
2046 ArrayRef<Value *> VL = {}) = 0;
2047 virtual InstructionCost
2049 ArrayRef<Type *> Tys,
2052 virtual bool supportsTailCalls() = 0;
2053 virtual bool supportsTailCallFor(const CallBase *CB) = 0;
2054 virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
2056 enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
2057 virtual bool enableSelectOptimize() = 0;
2063 unsigned BitWidth,
2064 unsigned AddressSpace,
2065 Align Alignment,
2066 unsigned *Fast) = 0;
2067 virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
2068 virtual bool haveFastSqrt(Type *Ty) = 0;
2070 virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
2072 virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
2073 const APInt &Imm, Type *Ty) = 0;
2074 virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
2076 virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
2077 const APInt &Imm, Type *Ty,
2079 Instruction *Inst = nullptr) = 0;
2081 const APInt &Imm, Type *Ty,
2084 const Function &Fn) const = 0;
2085 virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
2086 virtual bool hasConditionalLoadStoreForType(Type *Ty = nullptr) const = 0;
2087 virtual unsigned getRegisterClassForType(bool Vector,
2088 Type *Ty = nullptr) const = 0;
2089 virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
2091 virtual unsigned getMinVectorRegisterBitWidth() const = 0;
2092 virtual std::optional<unsigned> getMaxVScale() const = 0;
2093 virtual std::optional<unsigned> getVScaleForTuning() const = 0;
2094 virtual bool isVScaleKnownToBeAPowerOfTwo() const = 0;
2095 virtual bool
2097 virtual ElementCount getMinimumVF(unsigned ElemWidth,
2098 bool IsScalable) const = 0;
2099 virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
2100 virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
2101 Type *ScalarValTy) const = 0;
2103 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
2104 virtual unsigned getCacheLineSize() const = 0;
2105 virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
2106 virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level)
2107 const = 0;
2108 virtual std::optional<unsigned> getMinPageSize() const = 0;
2109
2110 /// \return How much before a load we should place the prefetch
2111 /// instruction. This is currently measured in number of
2112 /// instructions.
2113 virtual unsigned getPrefetchDistance() const = 0;
2114
2115 /// \return Some HW prefetchers can handle accesses up to a certain
2116 /// constant stride. This is the minimum stride in bytes where it
2117 /// makes sense to start adding SW prefetches. The default is 1,
2118 /// i.e. prefetch with any stride. Sometimes prefetching is beneficial
2119 /// even below the HW prefetcher limit, and the arguments provided are
2120 /// meant to serve as a basis for deciding this for a particular loop.
2121 virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
2122 unsigned NumStridedMemAccesses,
2123 unsigned NumPrefetches,
2124 bool HasCall) const = 0;
2125
2126 /// \return The maximum number of iterations to prefetch ahead. If
2127 /// the required number of iterations is more than this number, no
2128 /// prefetching is performed.
2129 virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
2130
2131 /// \return True if prefetching should also be done for writes.
2132 virtual bool enableWritePrefetching() const = 0;
2133
2134 /// \return if target want to issue a prefetch in address space \p AS.
2135 virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0;
2136
2137 /// \return The cost of a partial reduction, which is a reduction from a
2138 /// vector to another vector with fewer elements of larger size. They are
2139 /// represented by the llvm.experimental.partial.reduce.add intrinsic, which
2140 /// takes an accumulator and a binary operation operand that itself is fed by
2141 /// two extends. An example of an operation that uses a partial reduction is a
2142 /// dot product, which reduces two vectors to another of 4 times fewer and 4
2143 /// times larger elements.
2144 virtual InstructionCost
2145 getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB,
2146 Type *AccumType, ElementCount VF,
2149 std::optional<unsigned> BinOp) const = 0;
2150
2151 virtual unsigned getMaxInterleaveFactor(ElementCount VF) = 0;
2153 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
2154 OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
2155 ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0;
2157 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
2158 const SmallBitVector &OpcodeMask,
2160
2161 virtual InstructionCost
2164 ArrayRef<const Value *> Args, const Instruction *CxtI) = 0;
2165 virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst,
2166 Type *Src, CastContextHint CCH,
2168 const Instruction *I) = 0;
2169 virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
2170 VectorType *VecTy,
2171 unsigned Index) = 0;
2172 virtual InstructionCost getCFInstrCost(unsigned Opcode,
2174 const Instruction *I = nullptr) = 0;
2175 virtual InstructionCost
2176 getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2178 OperandValueInfo Op1Info, OperandValueInfo Op2Info,
2179 const Instruction *I) = 0;
2180 virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
2182 unsigned Index, Value *Op0,
2183 Value *Op1) = 0;
2184
2185 /// \param ScalarUserAndIdx encodes the information about extracts from a
2186 /// vector with 'Scalar' being the value being extracted,'User' being the user
2187 /// of the extract(nullptr if user is not known before vectorization) and
2188 /// 'Idx' being the extract lane.
2190 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
2191 Value *Scalar,
2192 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) = 0;
2193
2196 unsigned Index) = 0;
2197
2198 virtual InstructionCost
2199 getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
2200 const APInt &DemandedDstElts,
2202
2203 virtual InstructionCost
2204 getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2206 OperandValueInfo OpInfo, const Instruction *I) = 0;
2207 virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src,
2208 Align Alignment,
2209 unsigned AddressSpace,
2211 const Instruction *I) = 0;
2212 virtual InstructionCost
2213 getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2214 unsigned AddressSpace,
2216 virtual InstructionCost
2217 getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2218 bool VariableMask, Align Alignment,
2220 const Instruction *I = nullptr) = 0;
2221 virtual InstructionCost
2222 getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2223 bool VariableMask, Align Alignment,
2225 const Instruction *I = nullptr) = 0;
2226
2228 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2229 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2230 bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
2231 virtual InstructionCost
2233 std::optional<FastMathFlags> FMF,
2235 virtual InstructionCost
2239 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
2240 FastMathFlags FMF,
2243 bool IsUnsigned, Type *ResTy, VectorType *Ty,
2245 virtual InstructionCost
2249 ArrayRef<Type *> Tys,
2251 virtual unsigned getNumberOfParts(Type *Tp) = 0;
2252 virtual InstructionCost
2254 virtual InstructionCost
2257 MemIntrinsicInfo &Info) = 0;
2258 virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
2260 Type *ExpectedType) = 0;
2262 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
2263 unsigned DestAddrSpace, Align SrcAlign, Align DestAlign,
2264 std::optional<uint32_t> AtomicElementSize) const = 0;
2265
2267 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2268 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2269 Align SrcAlign, Align DestAlign,
2270 std::optional<uint32_t> AtomicCpySize) const = 0;
2271 virtual bool areInlineCompatible(const Function *Caller,
2272 const Function *Callee) const = 0;
2273 virtual unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
2274 unsigned DefaultCallPenalty) const = 0;
2275 virtual bool areTypesABICompatible(const Function *Caller,
2276 const Function *Callee,
2277 const ArrayRef<Type *> &Types) const = 0;
2278 virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
2279 virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
2280 virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
2281 virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
2282 virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
2283 virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
2284 Align Alignment,
2285 unsigned AddrSpace) const = 0;
2286 virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
2287 Align Alignment,
2288 unsigned AddrSpace) const = 0;
2290 ElementCount VF) const = 0;
2291 virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0;
2292 virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2293 unsigned ChainSizeInBytes,
2294 VectorType *VecTy) const = 0;
2295 virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2296 unsigned ChainSizeInBytes,
2297 VectorType *VecTy) const = 0;
2298 virtual bool preferFixedOverScalableIfEqualCost() const = 0;
2299 virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2300 ReductionFlags) const = 0;
2301 virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2302 ReductionFlags) const = 0;
2303 virtual bool preferEpilogueVectorization() const = 0;
2304
2305 virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
2306 virtual ReductionShuffle
2308 virtual unsigned getGISelRematGlobalCost() const = 0;
2309 virtual unsigned getMinTripCountTailFoldingThreshold() const = 0;
2310 virtual bool enableScalableVectorization() const = 0;
2311 virtual bool supportsScalableVectors() const = 0;
2312 virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
2313 Align Alignment) const = 0;
2314 virtual bool
2316 SmallVectorImpl<Use *> &OpsToSink) const = 0;
2317
2318 virtual bool isVectorShiftByScalarCheap(Type *Ty) const = 0;
2319 virtual VPLegalization
2321 virtual bool hasArmWideBranch(bool Thumb) const = 0;
2322 virtual uint64_t getFeatureMask(const Function &F) const = 0;
2323 virtual bool isMultiversionedFunction(const Function &F) const = 0;
2324 virtual unsigned getMaxNumArgs() const = 0;
2325 virtual unsigned getNumBytesToPadGlobalArray(unsigned Size,
2326 Type *ArrayType) const = 0;
2327};
2328
2329template <typename T>
2330class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
2331 T Impl;
2332
2333public:
2334 Model(T Impl) : Impl(std::move(Impl)) {}
2335 ~Model() override = default;
2336
2337 const DataLayout &getDataLayout() const override {
2338 return Impl.getDataLayout();
2339 }
2340
2341 InstructionCost
2342 getGEPCost(Type *PointeeType, const Value *Ptr,
2343 ArrayRef<const Value *> Operands, Type *AccessType,
2345 return Impl.getGEPCost(PointeeType, Ptr, Operands, AccessType, CostKind);
2346 }
2347 InstructionCost getPointersChainCost(ArrayRef<const Value *> Ptrs,
2348 const Value *Base,
2349 const PointersChainInfo &Info,
2350 Type *AccessTy,
2351 TargetCostKind CostKind) override {
2352 return Impl.getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind);
2353 }
2354 unsigned getInliningThresholdMultiplier() const override {
2355 return Impl.getInliningThresholdMultiplier();
2356 }
2357 unsigned adjustInliningThreshold(const CallBase *CB) override {
2358 return Impl.adjustInliningThreshold(CB);
2359 }
2360 unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const override {
2361 return Impl.getInliningCostBenefitAnalysisSavingsMultiplier();
2362 }
2363 unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const override {
2364 return Impl.getInliningCostBenefitAnalysisProfitableMultiplier();
2365 }
2366 int getInliningLastCallToStaticBonus() const override {
2367 return Impl.getInliningLastCallToStaticBonus();
2368 }
2369 int getInlinerVectorBonusPercent() const override {
2370 return Impl.getInlinerVectorBonusPercent();
2371 }
2372 unsigned getCallerAllocaCost(const CallBase *CB,
2373 const AllocaInst *AI) const override {
2374 return Impl.getCallerAllocaCost(CB, AI);
2375 }
2376 InstructionCost getMemcpyCost(const Instruction *I) override {
2377 return Impl.getMemcpyCost(I);
2378 }
2379
2380 uint64_t getMaxMemIntrinsicInlineSizeThreshold() const override {
2381 return Impl.getMaxMemIntrinsicInlineSizeThreshold();
2382 }
2383
2384 InstructionCost getInstructionCost(const User *U,
2385 ArrayRef<const Value *> Operands,
2386 TargetCostKind CostKind) override {
2387 return Impl.getInstructionCost(U, Operands, CostKind);
2388 }
2389 BranchProbability getPredictableBranchThreshold() override {
2390 return Impl.getPredictableBranchThreshold();
2391 }
2392 InstructionCost getBranchMispredictPenalty() override {
2393 return Impl.getBranchMispredictPenalty();
2394 }
2395 bool hasBranchDivergence(const Function *F = nullptr) override {
2396 return Impl.hasBranchDivergence(F);
2397 }
2398 bool isSourceOfDivergence(const Value *V) override {
2399 return Impl.isSourceOfDivergence(V);
2400 }
2401
2402 bool isAlwaysUniform(const Value *V) override {
2403 return Impl.isAlwaysUniform(V);
2404 }
2405
2406 bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
2407 return Impl.isValidAddrSpaceCast(FromAS, ToAS);
2408 }
2409
2410 bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const override {
2411 return Impl.addrspacesMayAlias(AS0, AS1);
2412 }
2413
2414 unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
2415
2416 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
2417 Intrinsic::ID IID) const override {
2418 return Impl.collectFlatAddressOperands(OpIndexes, IID);
2419 }
2420
2421 bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
2422 return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
2423 }
2424
2425 bool
2426 canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override {
2427 return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS);
2428 }
2429
2430 unsigned getAssumedAddrSpace(const Value *V) const override {
2431 return Impl.getAssumedAddrSpace(V);
2432 }
2433
2434 bool isSingleThreaded() const override { return Impl.isSingleThreaded(); }
2435
2436 std::pair<const Value *, unsigned>
2437 getPredicatedAddrSpace(const Value *V) const override {
2438 return Impl.getPredicatedAddrSpace(V);
2439 }
2440
2441 Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
2442 Value *NewV) const override {
2443 return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
2444 }
2445
2446 bool isLoweredToCall(const Function *F) override {
2447 return Impl.isLoweredToCall(F);
2448 }
2449 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2450 UnrollingPreferences &UP,
2451 OptimizationRemarkEmitter *ORE) override {
2452 return Impl.getUnrollingPreferences(L, SE, UP, ORE);
2453 }
2454 void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2455 PeelingPreferences &PP) override {
2456 return Impl.getPeelingPreferences(L, SE, PP);
2457 }
2458 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
2459 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
2460 HardwareLoopInfo &HWLoopInfo) override {
2461 return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
2462 }
2463 unsigned getEpilogueVectorizationMinVF() override {
2464 return Impl.getEpilogueVectorizationMinVF();
2465 }
2466 bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) override {
2467 return Impl.preferPredicateOverEpilogue(TFI);
2468 }
2470 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) override {
2471 return Impl.getPreferredTailFoldingStyle(IVUpdateMayOverflow);
2472 }
2473 std::optional<Instruction *>
2474 instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override {
2475 return Impl.instCombineIntrinsic(IC, II);
2476 }
2477 std::optional<Value *>
2478 simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
2479 APInt DemandedMask, KnownBits &Known,
2480 bool &KnownBitsComputed) override {
2481 return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
2482 KnownBitsComputed);
2483 }
2484 std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
2485 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
2486 APInt &UndefElts2, APInt &UndefElts3,
2487 std::function<void(Instruction *, unsigned, APInt, APInt &)>
2488 SimplifyAndSetOp) override {
2489 return Impl.simplifyDemandedVectorEltsIntrinsic(
2490 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
2491 SimplifyAndSetOp);
2492 }
2493 bool isLegalAddImmediate(int64_t Imm) override {
2494 return Impl.isLegalAddImmediate(Imm);
2495 }
2496 bool isLegalAddScalableImmediate(int64_t Imm) override {
2497 return Impl.isLegalAddScalableImmediate(Imm);
2498 }
2499 bool isLegalICmpImmediate(int64_t Imm) override {
2500 return Impl.isLegalICmpImmediate(Imm);
2501 }
2502 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
2503 bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
2504 Instruction *I, int64_t ScalableOffset) override {
2505 return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
2506 AddrSpace, I, ScalableOffset);
2507 }
2508 bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
2509 const TargetTransformInfo::LSRCost &C2) override {
2510 return Impl.isLSRCostLess(C1, C2);
2511 }
2512 bool isNumRegsMajorCostOfLSR() override {
2513 return Impl.isNumRegsMajorCostOfLSR();
2514 }
2515 bool shouldDropLSRSolutionIfLessProfitable() const override {
2516 return Impl.shouldDropLSRSolutionIfLessProfitable();
2517 }
2518 bool isProfitableLSRChainElement(Instruction *I) override {
2519 return Impl.isProfitableLSRChainElement(I);
2520 }
2521 bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
2522 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
2523 DominatorTree *DT, AssumptionCache *AC,
2524 TargetLibraryInfo *LibInfo) override {
2525 return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
2526 }
2528 getPreferredAddressingMode(const Loop *L,
2529 ScalarEvolution *SE) const override {
2530 return Impl.getPreferredAddressingMode(L, SE);
2531 }
2532 bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
2533 return Impl.isLegalMaskedStore(DataType, Alignment);
2534 }
2535 bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
2536 return Impl.isLegalMaskedLoad(DataType, Alignment);
2537 }
2538 bool isLegalNTStore(Type *DataType, Align Alignment) override {
2539 return Impl.isLegalNTStore(DataType, Alignment);
2540 }
2541 bool isLegalNTLoad(Type *DataType, Align Alignment) override {
2542 return Impl.isLegalNTLoad(DataType, Alignment);
2543 }
2544 bool isLegalBroadcastLoad(Type *ElementTy,
2545 ElementCount NumElements) const override {
2546 return Impl.isLegalBroadcastLoad(ElementTy, NumElements);
2547 }
2548 bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
2549 return Impl.isLegalMaskedScatter(DataType, Alignment);
2550 }
2551 bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
2552 return Impl.isLegalMaskedGather(DataType, Alignment);
2553 }
2554 bool forceScalarizeMaskedGather(VectorType *DataType,
2555 Align Alignment) override {
2556 return Impl.forceScalarizeMaskedGather(DataType, Alignment);
2557 }
2558 bool forceScalarizeMaskedScatter(VectorType *DataType,
2559 Align Alignment) override {
2560 return Impl.forceScalarizeMaskedScatter(DataType, Alignment);
2561 }
2562 bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) override {
2563 return Impl.isLegalMaskedCompressStore(DataType, Alignment);
2564 }
2565 bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) override {
2566 return Impl.isLegalMaskedExpandLoad(DataType, Alignment);
2567 }
2568 bool isLegalStridedLoadStore(Type *DataType, Align Alignment) override {
2569 return Impl.isLegalStridedLoadStore(DataType, Alignment);
2570 }
2571 bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
2572 Align Alignment,
2573 unsigned AddrSpace) override {
2574 return Impl.isLegalInterleavedAccessType(VTy, Factor, Alignment, AddrSpace);
2575 }
2576 bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) override {
2577 return Impl.isLegalMaskedVectorHistogram(AddrType, DataType);
2578 }
2579 bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
2580 const SmallBitVector &OpcodeMask) const override {
2581 return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
2582 }
2583 bool enableOrderedReductions() override {
2584 return Impl.enableOrderedReductions();
2585 }
2586 bool hasDivRemOp(Type *DataType, bool IsSigned) override {
2587 return Impl.hasDivRemOp(DataType, IsSigned);
2588 }
2589 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
2590 return Impl.hasVolatileVariant(I, AddrSpace);
2591 }
2592 bool prefersVectorizedAddressing() override {
2593 return Impl.prefersVectorizedAddressing();
2594 }
2595 InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
2596 StackOffset BaseOffset, bool HasBaseReg,
2597 int64_t Scale,
2598 unsigned AddrSpace) override {
2599 return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
2600 AddrSpace);
2601 }
2602 bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
2603 bool isTruncateFree(Type *Ty1, Type *Ty2) override {
2604 return Impl.isTruncateFree(Ty1, Ty2);
2605 }
2606 bool isProfitableToHoist(Instruction *I) override {
2607 return Impl.isProfitableToHoist(I);
2608 }
2609 bool useAA() override { return Impl.useAA(); }
2610 bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
2611 unsigned getRegUsageForType(Type *Ty) override {
2612 return Impl.getRegUsageForType(Ty);
2613 }
2614 bool shouldBuildLookupTables() override {
2615 return Impl.shouldBuildLookupTables();
2616 }
2617 bool shouldBuildLookupTablesForConstant(Constant *C) override {
2618 return Impl.shouldBuildLookupTablesForConstant(C);
2619 }
2620 bool shouldBuildRelLookupTables() override {
2621 return Impl.shouldBuildRelLookupTables();
2622 }
2623 bool useColdCCForColdCall(Function &F) override {
2624 return Impl.useColdCCForColdCall(F);
2625 }
2626 bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) override {
2627 return Impl.isTargetIntrinsicTriviallyScalarizable(ID);
2628 }
2629
2630 bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
2631 unsigned ScalarOpdIdx) override {
2632 return Impl.isTargetIntrinsicWithScalarOpAtArg(ID, ScalarOpdIdx);
2633 }
2634
2635 bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
2636 int OpdIdx) override {
2637 return Impl.isTargetIntrinsicWithOverloadTypeAtArg(ID, OpdIdx);
2638 }
2639
2640 bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID,
2641 int RetIdx) override {
2642 return Impl.isTargetIntrinsicWithStructReturnOverloadAtField(ID, RetIdx);
2643 }
2644
2645 InstructionCost getScalarizationOverhead(VectorType *Ty,
2646 const APInt &DemandedElts,
2647 bool Insert, bool Extract,
2649 ArrayRef<Value *> VL = {}) override {
2650 return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
2651 CostKind, VL);
2652 }
2653 InstructionCost
2654 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
2655 ArrayRef<Type *> Tys,
2656 TargetCostKind CostKind) override {
2657 return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind);
2658 }
2659
2660 bool supportsEfficientVectorElementLoadStore() override {
2661 return Impl.supportsEfficientVectorElementLoadStore();
2662 }
2663
2664 bool supportsTailCalls() override { return Impl.supportsTailCalls(); }
2665 bool supportsTailCallFor(const CallBase *CB) override {
2666 return Impl.supportsTailCallFor(CB);
2667 }
2668
2669 bool enableAggressiveInterleaving(bool LoopHasReductions) override {
2670 return Impl.enableAggressiveInterleaving(LoopHasReductions);
2671 }
2672 MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
2673 bool IsZeroCmp) const override {
2674 return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
2675 }
2676 bool enableSelectOptimize() override {
2677 return Impl.enableSelectOptimize();
2678 }
2679 bool shouldTreatInstructionLikeSelect(const Instruction *I) override {
2680 return Impl.shouldTreatInstructionLikeSelect(I);
2681 }
2682 bool enableInterleavedAccessVectorization() override {
2683 return Impl.enableInterleavedAccessVectorization();
2684 }
2685 bool enableMaskedInterleavedAccessVectorization() override {
2686 return Impl.enableMaskedInterleavedAccessVectorization();
2687 }
2688 bool isFPVectorizationPotentiallyUnsafe() override {
2689 return Impl.isFPVectorizationPotentiallyUnsafe();
2690 }
2691 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
2692 unsigned AddressSpace, Align Alignment,
2693 unsigned *Fast) override {
2694 return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
2695 Alignment, Fast);
2696 }
2697 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
2698 return Impl.getPopcntSupport(IntTyWidthInBit);
2699 }
2700 bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
2701
2702 bool isExpensiveToSpeculativelyExecute(const Instruction* I) override {
2703 return Impl.isExpensiveToSpeculativelyExecute(I);
2704 }
2705
2706 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
2707 return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
2708 }
2709
2710 InstructionCost getFPOpCost(Type *Ty) override {
2711 return Impl.getFPOpCost(Ty);
2712 }
2713
2714 InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
2715 const APInt &Imm, Type *Ty) override {
2716 return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
2717 }
2718 InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
2719 TargetCostKind CostKind) override {
2720 return Impl.getIntImmCost(Imm, Ty, CostKind);
2721 }
2722 InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
2723 const APInt &Imm, Type *Ty,
2725 Instruction *Inst = nullptr) override {
2726 return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
2727 }
2728 InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
2729 const APInt &Imm, Type *Ty,
2730 TargetCostKind CostKind) override {
2731 return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
2732 }
2733 bool preferToKeepConstantsAttached(const Instruction &Inst,
2734 const Function &Fn) const override {
2735 return Impl.preferToKeepConstantsAttached(Inst, Fn);
2736 }
2737 unsigned getNumberOfRegisters(unsigned ClassID) const override {
2738 return Impl.getNumberOfRegisters(ClassID);
2739 }
2740 bool hasConditionalLoadStoreForType(Type *Ty = nullptr) const override {
2741 return Impl.hasConditionalLoadStoreForType(Ty);
2742 }
2743 unsigned getRegisterClassForType(bool Vector,
2744 Type *Ty = nullptr) const override {
2745 return Impl.getRegisterClassForType(Vector, Ty);
2746 }
2747 const char *getRegisterClassName(unsigned ClassID) const override {
2748 return Impl.getRegisterClassName(ClassID);
2749 }
2750 TypeSize getRegisterBitWidth(RegisterKind K) const override {
2751 return Impl.getRegisterBitWidth(K);
2752 }
2753 unsigned getMinVectorRegisterBitWidth() const override {
2754 return Impl.getMinVectorRegisterBitWidth();
2755 }
2756 std::optional<unsigned> getMaxVScale() const override {
2757 return Impl.getMaxVScale();
2758 }
2759 std::optional<unsigned> getVScaleForTuning() const override {
2760 return Impl.getVScaleForTuning();
2761 }
2762 bool isVScaleKnownToBeAPowerOfTwo() const override {
2763 return Impl.isVScaleKnownToBeAPowerOfTwo();
2764 }
2765 bool shouldMaximizeVectorBandwidth(
2766 TargetTransformInfo::RegisterKind K) const override {
2767 return Impl.shouldMaximizeVectorBandwidth(K);
2768 }
2769 ElementCount getMinimumVF(unsigned ElemWidth,
2770 bool IsScalable) const override {
2771 return Impl.getMinimumVF(ElemWidth, IsScalable);
2772 }
2773 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
2774 return Impl.getMaximumVF(ElemWidth, Opcode);
2775 }
2776 unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
2777 Type *ScalarValTy) const override {
2778 return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
2779 }
2780 bool shouldConsiderAddressTypePromotion(
2781 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
2782 return Impl.shouldConsiderAddressTypePromotion(
2783 I, AllowPromotionWithoutCommonHeader);
2784 }
2785 unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
2786 std::optional<unsigned> getCacheSize(CacheLevel Level) const override {
2787 return Impl.getCacheSize(Level);
2788 }
2789 std::optional<unsigned>
2790 getCacheAssociativity(CacheLevel Level) const override {
2791 return Impl.getCacheAssociativity(Level);
2792 }
2793
2794 std::optional<unsigned> getMinPageSize() const override {
2795 return Impl.getMinPageSize();
2796 }
2797
2798 /// Return the preferred prefetch distance in terms of instructions.
2799 ///
2800 unsigned getPrefetchDistance() const override {
2801 return Impl.getPrefetchDistance();
2802 }
2803
2804 /// Return the minimum stride necessary to trigger software
2805 /// prefetching.
2806 ///
2807 unsigned getMinPrefetchStride(unsigned NumMemAccesses,
2808 unsigned NumStridedMemAccesses,
2809 unsigned NumPrefetches,
2810 bool HasCall) const override {
2811 return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
2812 NumPrefetches, HasCall);
2813 }
2814
2815 /// Return the maximum prefetch distance in terms of loop
2816 /// iterations.
2817 ///
2818 unsigned getMaxPrefetchIterationsAhead() const override {
2819 return Impl.getMaxPrefetchIterationsAhead();
2820 }
2821
2822 /// \return True if prefetching should also be done for writes.
2823 bool enableWritePrefetching() const override {
2824 return Impl.enableWritePrefetching();
2825 }
2826
2827 /// \return if target want to issue a prefetch in address space \p AS.
2828 bool shouldPrefetchAddressSpace(unsigned AS) const override {
2829 return Impl.shouldPrefetchAddressSpace(AS);
2830 }
2831
2832 InstructionCost getPartialReductionCost(
2833 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
2834 ElementCount VF, PartialReductionExtendKind OpAExtend,
2836 std::optional<unsigned> BinOp = std::nullopt) const override {
2837 return Impl.getPartialReductionCost(Opcode, InputTypeA, InputTypeB,
2838 AccumType, VF, OpAExtend, OpBExtend,
2839 BinOp);
2840 }
2841
2842 unsigned getMaxInterleaveFactor(ElementCount VF) override {
2843 return Impl.getMaxInterleaveFactor(VF);
2844 }
2845 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
2846 unsigned &JTSize,
2847 ProfileSummaryInfo *PSI,
2848 BlockFrequencyInfo *BFI) override {
2849 return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
2850 }
2851 InstructionCost getArithmeticInstrCost(
2852 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
2853 OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
2854 ArrayRef<const Value *> Args,
2855 const Instruction *CxtI = nullptr) override {
2856 return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
2857 Args, CxtI);
2858 }
2859 InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0,
2860 unsigned Opcode1,
2861 const SmallBitVector &OpcodeMask,
2862 TTI::TargetCostKind CostKind) const override {
2863 return Impl.getAltInstrCost(VecTy, Opcode0, Opcode1, OpcodeMask, CostKind);
2864 }
2865
2866 InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
2867 ArrayRef<int> Mask,
2869 VectorType *SubTp,
2870 ArrayRef<const Value *> Args,
2871 const Instruction *CxtI) override {
2872 return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args,
2873 CxtI);
2874 }
2875 InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
2876 CastContextHint CCH,
2878 const Instruction *I) override {
2879 return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
2880 }
2881 InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
2882 VectorType *VecTy,
2883 unsigned Index) override {
2884 return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
2885 }
2886 InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
2887 const Instruction *I = nullptr) override {
2888 return Impl.getCFInstrCost(Opcode, CostKind, I);
2889 }
2890 InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2891 CmpInst::Predicate VecPred,
2893 OperandValueInfo Op1Info,
2894 OperandValueInfo Op2Info,
2895 const Instruction *I) override {
2896 return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
2897 Op1Info, Op2Info, I);
2898 }
2899 InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
2901 unsigned Index, Value *Op0,
2902 Value *Op1) override {
2903 return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
2904 }
2905 InstructionCost getVectorInstrCost(
2906 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
2907 Value *Scalar,
2908 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) override {
2909 return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Scalar,
2910 ScalarUserAndIdx);
2911 }
2912 InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
2914 unsigned Index) override {
2915 return Impl.getVectorInstrCost(I, Val, CostKind, Index);
2916 }
2917 InstructionCost
2918 getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
2919 const APInt &DemandedDstElts,
2920 TTI::TargetCostKind CostKind) override {
2921 return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
2922 DemandedDstElts, CostKind);
2923 }
2924 InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2925 unsigned AddressSpace,
2927 OperandValueInfo OpInfo,
2928 const Instruction *I) override {
2929 return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind,
2930 OpInfo, I);
2931 }
2932 InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2933 unsigned AddressSpace,
2935 const Instruction *I) override {
2936 return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2937 CostKind, I);
2938 }
2939 InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
2940 Align Alignment, unsigned AddressSpace,
2941 TTI::TargetCostKind CostKind) override {
2942 return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2943 CostKind);
2944 }
2945 InstructionCost
2946 getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2947 bool VariableMask, Align Alignment,
2949 const Instruction *I = nullptr) override {
2950 return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
2951 Alignment, CostKind, I);
2952 }
2953 InstructionCost
2954 getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2955 bool VariableMask, Align Alignment,
2957 const Instruction *I = nullptr) override {
2958 return Impl.getStridedMemoryOpCost(Opcode, DataTy, Ptr, VariableMask,
2959 Alignment, CostKind, I);
2960 }
2961 InstructionCost getInterleavedMemoryOpCost(
2962 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2963 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2964 bool UseMaskForCond, bool UseMaskForGaps) override {
2965 return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2966 Alignment, AddressSpace, CostKind,
2967 UseMaskForCond, UseMaskForGaps);
2968 }
2969 InstructionCost
2970 getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2971 std::optional<FastMathFlags> FMF,
2972 TTI::TargetCostKind CostKind) override {
2973 return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
2974 }
2975 InstructionCost
2976 getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
2977 TTI::TargetCostKind CostKind) override {
2978 return Impl.getMinMaxReductionCost(IID, Ty, FMF, CostKind);
2979 }
2980 InstructionCost
2981 getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
2982 VectorType *Ty, FastMathFlags FMF,
2983 TTI::TargetCostKind CostKind) override {
2984 return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
2985 CostKind);
2986 }
2987 InstructionCost
2988 getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty,
2989 TTI::TargetCostKind CostKind) override {
2990 return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
2991 }
2992 InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2993 TTI::TargetCostKind CostKind) override {
2994 return Impl.getIntrinsicInstrCost(ICA, CostKind);
2995 }
2996 InstructionCost getCallInstrCost(Function *F, Type *RetTy,
2997 ArrayRef<Type *> Tys,
2998 TTI::TargetCostKind CostKind) override {
2999 return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
3000 }
3001 unsigned getNumberOfParts(Type *Tp) override {
3002 return Impl.getNumberOfParts(Tp);
3003 }
3004 InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
3005 const SCEV *Ptr) override {
3006 return Impl.getAddressComputationCost(Ty, SE, Ptr);
3007 }
3008 InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
3009 return Impl.getCostOfKeepingLiveOverCall(Tys);
3010 }
3011 bool getTgtMemIntrinsic(IntrinsicInst *Inst,
3012 MemIntrinsicInfo &Info) override {
3013 return Impl.getTgtMemIntrinsic(Inst, Info);
3014 }
3015 unsigned getAtomicMemIntrinsicMaxElementSize() const override {
3016 return Impl.getAtomicMemIntrinsicMaxElementSize();
3017 }
3018 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
3019 Type *ExpectedType) override {
3020 return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
3021 }
3022 Type *getMemcpyLoopLoweringType(
3023 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
3024 unsigned DestAddrSpace, Align SrcAlign, Align DestAlign,
3025 std::optional<uint32_t> AtomicElementSize) const override {
3026 return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
3027 DestAddrSpace, SrcAlign, DestAlign,
3028 AtomicElementSize);
3029 }
3030 void getMemcpyLoopResidualLoweringType(
3031 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
3032 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
3033 Align SrcAlign, Align DestAlign,
3034 std::optional<uint32_t> AtomicCpySize) const override {
3035 Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
3036 SrcAddrSpace, DestAddrSpace,
3037 SrcAlign, DestAlign, AtomicCpySize);
3038 }
3039 bool areInlineCompatible(const Function *Caller,
3040 const Function *Callee) const override {
3041 return Impl.areInlineCompatible(Caller, Callee);
3042 }
3043 unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
3044 unsigned DefaultCallPenalty) const override {
3045 return Impl.getInlineCallPenalty(F, Call, DefaultCallPenalty);
3046 }
3047 bool areTypesABICompatible(const Function *Caller, const Function *Callee,
3048 const ArrayRef<Type *> &Types) const override {
3049 return Impl.areTypesABICompatible(Caller, Callee, Types);
3050 }
3051 bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
3052 return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
3053 }
3054 bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
3055 return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
3056 }
3057 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
3058 return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
3059 }
3060 bool isLegalToVectorizeLoad(LoadInst *LI) const override {
3061 return Impl.isLegalToVectorizeLoad(LI);
3062 }
3063 bool isLegalToVectorizeStore(StoreInst *SI) const override {
3064 return Impl.isLegalToVectorizeStore(SI);
3065 }
3066 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
3067 unsigned AddrSpace) const override {
3068 return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
3069 AddrSpace);
3070 }
3071 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
3072 unsigned AddrSpace) const override {
3073 return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
3074 AddrSpace);
3075 }
3076 bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
3077 ElementCount VF) const override {
3078 return Impl.isLegalToVectorizeReduction(RdxDesc, VF);
3079 }
3080 bool isElementTypeLegalForScalableVector(Type *Ty) const override {
3081 return Impl.isElementTypeLegalForScalableVector(Ty);
3082 }
3083 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
3084 unsigned ChainSizeInBytes,
3085 VectorType *VecTy) const override {
3086 return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
3087 }
3088 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
3089 unsigned ChainSizeInBytes,
3090 VectorType *VecTy) const override {
3091 return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
3092 }
3093 bool preferFixedOverScalableIfEqualCost() const override {
3094 return Impl.preferFixedOverScalableIfEqualCost();
3095 }
3096 bool preferInLoopReduction(unsigned Opcode, Type *Ty,
3097 ReductionFlags Flags) const override {
3098 return Impl.preferInLoopReduction(Opcode, Ty, Flags);
3099 }
3100 bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
3101 ReductionFlags Flags) const override {
3102 return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
3103 }
3104 bool preferEpilogueVectorization() const override {
3105 return Impl.preferEpilogueVectorization();
3106 }
3107
3108 bool shouldExpandReduction(const IntrinsicInst *II) const override {
3109 return Impl.shouldExpandReduction(II);
3110 }
3111
3113 getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const override {
3114 return Impl.getPreferredExpandedReductionShuffle(II);
3115 }
3116
3117 unsigned getGISelRematGlobalCost() const override {
3118 return Impl.getGISelRematGlobalCost();
3119 }
3120
3121 unsigned getMinTripCountTailFoldingThreshold() const override {
3122 return Impl.getMinTripCountTailFoldingThreshold();
3123 }
3124
3125 bool supportsScalableVectors() const override {
3126 return Impl.supportsScalableVectors();
3127 }
3128
3129 bool enableScalableVectorization() const override {
3130 return Impl.enableScalableVectorization();
3131 }
3132
3133 bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
3134 Align Alignment) const override {
3135 return Impl.hasActiveVectorLength(Opcode, DataType, Alignment);
3136 }
3137
3138 bool isProfitableToSinkOperands(Instruction *I,
3139 SmallVectorImpl<Use *> &Ops) const override {
3140 return Impl.isProfitableToSinkOperands(I, Ops);
3141 };
3142
3143 bool isVectorShiftByScalarCheap(Type *Ty) const override {
3144 return Impl.isVectorShiftByScalarCheap(Ty);
3145 }
3146
3148 getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
3149 return Impl.getVPLegalizationStrategy(PI);
3150 }
3151
3152 bool hasArmWideBranch(bool Thumb) const override {
3153 return Impl.hasArmWideBranch(Thumb);
3154 }
3155
3156 uint64_t getFeatureMask(const Function &F) const override {
3157 return Impl.getFeatureMask(F);
3158 }
3159
3160 bool isMultiversionedFunction(const Function &F) const override {
3161 return Impl.isMultiversionedFunction(F);
3162 }
3163
3164 unsigned getMaxNumArgs() const override {
3165 return Impl.getMaxNumArgs();
3166 }
3167
3168 unsigned getNumBytesToPadGlobalArray(unsigned Size,
3169 Type *ArrayType) const override {
3170 return Impl.getNumBytesToPadGlobalArray(Size, ArrayType);
3171 }
3172};
3173
3174template <typename T>
3176 : TTIImpl(new Model<T>(Impl)) {}
3177
3178/// Analysis pass providing the \c TargetTransformInfo.
3179///
3180/// The core idea of the TargetIRAnalysis is to expose an interface through
3181/// which LLVM targets can analyze and provide information about the middle
3182/// end's target-independent IR. This supports use cases such as target-aware
3183/// cost modeling of IR constructs.
3184///
3185/// This is a function analysis because much of the cost modeling for targets
3186/// is done in a subtarget specific way and LLVM supports compiling different
3187/// functions targeting different subtargets in order to support runtime
3188/// dispatch according to the observed subtarget.
3189class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
3190public:
3192
3193 /// Default construct a target IR analysis.
3194 ///
3195 /// This will use the module's datalayout to construct a baseline
3196 /// conservative TTI result.
3198
3199 /// Construct an IR analysis pass around a target-provide callback.
3200 ///
3201 /// The callback will be called with a particular function for which the TTI
3202 /// is needed and must return a TTI object for that function.
3203 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
3204
3205 // Value semantics. We spell out the constructors for MSVC.
3207 : TTICallback(Arg.TTICallback) {}
3209 : TTICallback(std::move(Arg.TTICallback)) {}
3211 TTICallback = RHS.TTICallback;
3212 return *this;
3213 }
3215 TTICallback = std::move(RHS.TTICallback);
3216 return *this;
3217 }
3218
3220
3221private:
3223 static AnalysisKey Key;
3224
3225 /// The callback used to produce a result.
3226 ///
3227 /// We use a completely opaque callback so that targets can provide whatever
3228 /// mechanism they desire for constructing the TTI for a given function.
3229 ///
3230 /// FIXME: Should we really use std::function? It's relatively inefficient.
3231 /// It might be possible to arrange for even stateful callbacks to outlive
3232 /// the analysis and thus use a function_ref which would be lighter weight.
3233 /// This may also be less error prone as the callback is likely to reference
3234 /// the external TargetMachine, and that reference needs to never dangle.
3235 std::function<Result(const Function &)> TTICallback;
3236
3237 /// Helper function used as the callback in the default constructor.
3238 static Result getDefaultTTI(const Function &F);
3239};
3240
3241/// Wrapper pass for TargetTransformInfo.
3242///
3243/// This pass can be constructed from a TTI object which it stores internally
3244/// and is queried by passes.
3246 TargetIRAnalysis TIRA;
3247 std::optional<TargetTransformInfo> TTI;
3248
3249 virtual void anchor();
3250
3251public:
3252 static char ID;
3253
3254 /// We must provide a default constructor for the pass but it should
3255 /// never be used.
3256 ///
3257 /// Use the constructor below or call one of the creation routines.
3259
3261
3263};
3264
3265/// Create an analysis pass wrapper around a TTI object.
3266///
3267/// This analysis pass just holds the TTI instance and makes it available to
3268/// clients.
3270
3271} // namespace llvm
3272
3273#endif
AMDGPU Lower Kernel Arguments
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
RelocType Type
Definition: COFFYAML.cpp:410
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint32_t Index
uint64_t Size
static cl::opt< bool > ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops"))
static cl::opt< bool > ForceHardwareLoopPHI("force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi"))
This header defines various interfaces for pass management in LLVM.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
Machine InstCombiner
uint64_t IntrinsicInst * II
static cl::opt< RegAllocEvictionAdvisorAnalysis::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Development, "development", "for training")))
Value * RHS
Class for arbitrary precision integers.
Definition: APInt.h:78
an instruction to allocate memory on the stack
Definition: Instructions.h:63
API to communicate dependencies between analyses during invalidation.
Definition: PassManager.h:292
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Class to represent array types.
Definition: DerivedTypes.h:395
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1112
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
This is an important base class in LLVM.
Definition: Constant.h:42
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
ImmutablePass class - This class is used to provide information that does not need to be run.
Definition: Pass.h:281
The core instruction combiner logic.
Definition: InstCombiner.h:48
static InstructionCost getInvalid(CostType Val=0)
Class to represent integer types.
Definition: DerivedTypes.h:42
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:630
const SmallVectorImpl< Type * > & getArgTypes() const
const SmallVectorImpl< const Value * > & getArgs() const
InstructionCost getScalarizationCost() const
const IntrinsicInst * getInst() const
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:176
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
The optimization diagnostic interface.
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Definition: IVDescriptors.h:77
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StackOffset holds a fixed and a scalable offset in bytes.
Definition: TypeSize.h:33
An instruction for storing to memory.
Definition: Instructions.h:292
Multiway switch.
Analysis pass providing the TargetTransformInfo.
TargetIRAnalysis(const TargetIRAnalysis &Arg)
TargetIRAnalysis & operator=(const TargetIRAnalysis &RHS)
Result run(const Function &F, FunctionAnalysisManager &)
TargetTransformInfo Result
TargetIRAnalysis()
Default construct a target IR analysis.
TargetIRAnalysis & operator=(TargetIRAnalysis &&RHS)
TargetIRAnalysis(TargetIRAnalysis &&Arg)
Provides information about what library functions are available for the current target.
Wrapper pass for TargetTransformInfo.
TargetTransformInfoWrapperPass()
We must provide a default constructor for the pass but it should never be used.
TargetTransformInfo & getTTI(const Function &F)
virtual bool preferFixedOverScalableIfEqualCost() const =0
virtual std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)=0
virtual InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr)=0
virtual TypeSize getRegisterBitWidth(RegisterKind K) const =0
virtual const DataLayout & getDataLayout() const =0
virtual InstructionCost getBranchMispredictPenalty()=0
virtual bool isProfitableLSRChainElement(Instruction *I)=0
virtual InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)=0
virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst=nullptr)=0
virtual InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind)=0
virtual uint64_t getFeatureMask(const Function &F) const =0
virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)=0
virtual bool isLegalNTStore(Type *DataType, Align Alignment)=0
virtual unsigned adjustInliningThreshold(const CallBase *CB)=0
virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, OperandValueInfo Op1Info, OperandValueInfo Op2Info, const Instruction *I)=0
virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I)=0
virtual bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const =0
virtual bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace)=0
virtual std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II)=0
virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags) const =0
virtual VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const =0
virtual bool isLegalNTLoad(Type *DataType, Align Alignment)=0
virtual bool enableOrderedReductions()=0
virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit)=0
virtual unsigned getNumberOfRegisters(unsigned ClassID) const =0
virtual std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const =0
virtual bool isLegalMaskedGather(Type *DataType, Align Alignment)=0
virtual bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef< Type * > &Types) const =0
virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind)=0
virtual bool shouldPrefetchAddressSpace(unsigned AS) const =0
virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty)=0
virtual unsigned getMinVectorRegisterBitWidth() const =0
virtual InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const =0
virtual std::optional< unsigned > getVScaleForTuning() const =0
virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind)=0
virtual InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)=0
virtual bool supportsEfficientVectorElementLoadStore()=0
virtual unsigned getRegUsageForType(Type *Ty)=0
virtual bool hasArmWideBranch(bool Thumb) const =0
virtual MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const =0
virtual InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput)=0
virtual InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, OperandValueInfo Opd1Info, OperandValueInfo Opd2Info, ArrayRef< const Value * > Args, const Instruction *CxtI=nullptr)=0
virtual unsigned getAssumedAddrSpace(const Value *V) const =0
virtual bool isTruncateFree(Type *Ty1, Type *Ty2)=0
virtual bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID)=0
virtual bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const =0
virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind)=0
virtual bool shouldBuildLookupTables()=0
virtual bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const =0
virtual bool isLegalToVectorizeStore(StoreInst *SI) const =0
virtual bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType)=0
virtual bool isVectorShiftByScalarCheap(Type *Ty) const =0
virtual unsigned getGISelRematGlobalCost() const =0
virtual unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const =0
virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace)=0
virtual Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicElementSize) const =0
virtual bool forceScalarizeMaskedScatter(VectorType *DataType, Align Alignment)=0
virtual bool supportsTailCallFor(const CallBase *CB)=0
virtual std::optional< unsigned > getMaxVScale() const =0
virtual InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind)=0
virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const =0
virtual unsigned getMaxNumArgs() const =0
virtual bool shouldExpandReduction(const IntrinsicInst *II) const =0
virtual bool enableWritePrefetching() const =0
virtual bool useColdCCForColdCall(Function &F)=0
virtual unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const =0
virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags) const =0
virtual int getInlinerVectorBonusPercent() const =0
virtual unsigned getMaxPrefetchIterationsAhead() const =0
virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment)=0
virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const =0
virtual unsigned getCacheLineSize() const =0
virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const =0
virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const =0
virtual ReductionShuffle getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const =0
virtual AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const =0
virtual bool shouldBuildLookupTablesForConstant(Constant *C)=0
virtual bool preferPredicateOverEpilogue(TailFoldingInfo *TFI)=0
virtual bool isProfitableToHoist(Instruction *I)=0
virtual InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TargetCostKind CostKind, ArrayRef< Value * > VL={})=0
virtual bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment)=0
virtual InstructionCost getFPOpCost(Type *Ty)=0
virtual unsigned getMinTripCountTailFoldingThreshold() const =0
virtual bool enableMaskedInterleavedAccessVectorization()=0
virtual unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const =0
virtual bool isTypeLegal(Type *Ty)=0
virtual BranchProbability getPredictableBranchThreshold()=0
virtual bool enableScalableVectorization() const =0
virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info)=0
virtual bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const =0
virtual const char * getRegisterClassName(unsigned ClassID) const =0
virtual unsigned getMaxInterleaveFactor(ElementCount VF)=0
virtual bool enableAggressiveInterleaving(bool LoopHasReductions)=0
virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const =0
virtual bool haveFastSqrt(Type *Ty)=0
virtual bool isLegalMaskedCompressStore(Type *DataType, Align Alignment)=0
virtual std::optional< unsigned > getCacheSize(CacheLevel Level) const =0
virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind)=0
virtual InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind)=0
virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP)=0
virtual std::optional< unsigned > getCacheAssociativity(CacheLevel Level) const =0
virtual bool supportsScalableVectors() const =0
virtual void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize) const =0
virtual bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx)=0
virtual bool forceScalarizeMaskedGather(VectorType *DataType, Align Alignment)=0
virtual unsigned getNumberOfParts(Type *Tp)=0
virtual bool isLegalICmpImmediate(int64_t Imm)=0
virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)=0
virtual InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)=0
virtual bool isElementTypeLegalForScalableVector(Type *Ty) const =0
virtual TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true)=0
virtual bool hasDivRemOp(Type *DataType, bool IsSigned)=0
virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const =0
virtual bool shouldBuildRelLookupTables()=0
virtual InstructionCost getOperandsScalarizationOverhead(ArrayRef< const Value * > Args, ArrayRef< Type * > Tys, TargetCostKind CostKind)=0
virtual bool isLoweredToCall(const Function *F)=0
virtual bool isSourceOfDivergence(const Value *V)=0
virtual bool isLegalAddScalableImmediate(int64_t Imm)=0
virtual bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const =0
virtual unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const =0
virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment)=0
virtual unsigned getNumBytesToPadGlobalArray(unsigned Size, Type *ArrayType) const =0
virtual InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput)=0
virtual bool isFPVectorizationPotentiallyUnsafe()=0
virtual Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType)=0
virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const =0
virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty)=0
virtual bool hasConditionalLoadStoreForType(Type *Ty=nullptr) const =0
virtual InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, PartialReductionExtendKind OpAExtend, PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp) const =0
virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I)=0
virtual bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &OpsToSink) const =0
virtual bool hasBranchDivergence(const Function *F=nullptr)=0
virtual InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind)=0
virtual bool isMultiversionedFunction(const Function &F) const =0
virtual unsigned getInliningThresholdMultiplier() const =0
virtual InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind)=0
virtual bool isLegalMaskedStore(Type *DataType, Align Alignment)=0
virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index)=0
virtual bool isLegalToVectorizeLoad(LoadInst *LI) const =0
virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const =0
virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const =0
virtual bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx)=0
virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2)=0
virtual bool shouldDropLSRSolutionIfLessProfitable() const =0
virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const =0
virtual InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false)=0
virtual bool prefersVectorizedAddressing()=0
virtual uint64_t getMaxMemIntrinsicInlineSizeThreshold() const =0
virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args, const Instruction *CxtI)=0
virtual InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, OperandValueInfo OpInfo, const Instruction *I)=0
virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo)=0
virtual InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind)=0
virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo)=0
virtual bool isAlwaysUniform(const Value *V)=0
virtual std::optional< unsigned > getMinPageSize() const =0
virtual InstructionCost getMemcpyCost(const Instruction *I)=0
virtual ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const =0
virtual bool areInlineCompatible(const Function *Caller, const Function *Callee) const =0
virtual bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const =0
virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index)=0
virtual unsigned getEpilogueVectorizationMinVF()=0
virtual std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)=0
virtual InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)=0
virtual unsigned getFlatAddressSpace()=0
virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1)=0
virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Scalar, ArrayRef< std::tuple< Value *, User *, int > > ScalarUserAndIdx)=0
virtual unsigned getPrefetchDistance() const =0
virtual bool shouldTreatInstructionLikeSelect(const Instruction *I)=0
virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace)=0
virtual bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const =0
virtual bool isNumRegsMajorCostOfLSR()=0
virtual bool isLegalStridedLoadStore(Type *DataType, Align Alignment)=0
virtual bool isSingleThreaded() const =0
virtual bool isLegalAddImmediate(int64_t Imm)=0
virtual Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const =0
virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I, int64_t ScalableOffset)=0
virtual bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader)=0
virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const =0
virtual bool isVScaleKnownToBeAPowerOfTwo() const =0
virtual InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys)=0
virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType, Align Alignment) const =0
virtual bool enableInterleavedAccessVectorization()=0
virtual bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx)=0
virtual unsigned getAtomicMemIntrinsicMaxElementSize() const =0
virtual bool preferEpilogueVectorization() const =0
virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, const Instruction *I)=0
virtual int getInliningLastCallToStaticBonus() const =0
virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const =0
virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const =0
virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, Align Alignment, unsigned *Fast)=0
virtual unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const =0
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
bool isLegalToVectorizeLoad(LoadInst *LI) const
std::optional< unsigned > getVScaleForTuning() const
static CastContextHint getCastContextHint(const Instruction *I)
Calculates a CastContextHint from I.
bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const
Return false if a AS0 address cannot possibly alias a AS1 address.
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const
Return true if the target supports masked scatter.
InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
bool shouldBuildLookupTables() const
Return true if switches should be turned into lookup tables for the target.
bool isLegalToVectorizeStore(StoreInst *SI) const
bool enableAggressiveInterleaving(bool LoopHasReductions) const
Don't restrict interleaved unrolling to small loops.
uint64_t getFeatureMask(const Function &F) const
Returns a bitmask constructed from the target-features or fmv-features metadata of a function.
bool isMultiversionedFunction(const Function &F) const
Returns true if this is an instance of a function with multiple versions.
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const
Return true if it is faster to check if a floating-point value is NaN (or not-NaN) versus a compariso...
bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags Flags) const
bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
bool isAlwaysUniform(const Value *V) const
unsigned getAssumedAddrSpace(const Value *V) const
bool shouldDropLSRSolutionIfLessProfitable() const
Return true if LSR should drop a found solution if it's calculated to be less profitable than the bas...
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const
Return true if LSR cost of C1 is lower than C2.
Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicElementSize=std::nullopt) const
bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const
Return true if the target supports masked expand load.
bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo Op1Info={OK_AnyValue, OP_None}, OperandValueInfo Op2Info={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
bool hasBranchDivergence(const Function *F=nullptr) const
Return true if branch divergence exists.
MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE=nullptr, const SCEV *Ptr=nullptr) const
bool invalidate(Function &, const PreservedAnalyses &, FunctionAnalysisManager::Invalidator &)
Handle the invalidation of this information.
void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const
Get target-customized preferences for the generic loop unrolling transformation.
bool shouldBuildLookupTablesForConstant(Constant *C) const
Return true if switches should be turned into lookup tables containing this constant value for the ta...
InstructionCost getOperandsScalarizationOverhead(ArrayRef< const Value * > Args, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing an instructions unique non-constant operands.
bool supportsTailCallFor(const CallBase *CB) const
If target supports tail call on CB.
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
Targets can implement their own combinations for target-specific intrinsics.
bool isProfitableLSRChainElement(Instruction *I) const
TypeSize getRegisterBitWidth(RegisterKind K) const
unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const
Returns a penalty for invoking call Call in F.
bool isExpensiveToSpeculativelyExecute(const Instruction *I) const
Return true if the cost of the instruction is too high to speculatively execute and should be kept be...
bool isLegalMaskedGather(Type *DataType, Align Alignment) const
Return true if the target supports masked gather.
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
std::optional< unsigned > getMaxVScale() const
InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) const
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
Can be used to implement target-specific instruction combining.
bool enableOrderedReductions() const
Return true if we should be enabling ordered reductions for the target.
InstructionCost getInstructionCost(const User *U, TargetCostKind CostKind) const
This is a helper function which calls the three-argument getInstructionCost with Operands which are t...
unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of vector reduction intrinsics.
unsigned getAtomicMemIntrinsicMaxElementSize() const
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
bool LSRWithInstrQueries() const
Return true if the loop strength reduce pass should make Instruction* based TTI queries to isLegalAdd...
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const
static PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
bool shouldTreatInstructionLikeSelect(const Instruction *I) const
Should the Select Optimization pass treat the given instruction like a select, potentially converting...
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Query the target what the preferred style of tail folding is.
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType=nullptr, TargetCostKind CostKind=TCK_SizeAndLatency) const
Estimate the cost of a GEP operation when lowered.
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace) const
Return true is the target supports interleaved access for the given vector type VTy,...
unsigned getRegUsageForType(Type *Ty) const
Returns the estimated number of registers required to represent Ty.
bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const
\Returns true if the target supports broadcasting a load to a vector of type <NumElements x ElementTy...
bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const
std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
ReductionShuffle getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of a reduc...
static OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of an Add ...
unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0, Instruction *I=nullptr, int64_t ScalableOffset=0) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const
Return hardware support for population count.
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
bool isElementTypeLegalForScalableVector(Type *Ty) const
bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.gather intrinsics.
unsigned getMaxPrefetchIterationsAhead() const
bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const
Return true if globals in this address space can have initializers other than undef.
ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
bool enableMaskedInterleavedAccessVectorization() const
Enable matching of interleaved access groups that contain predicated accesses or gaps and therefore v...
InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst=nullptr) const
Return the expected cost of materialization for the given integer immediate of the specified type for...
bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const
Return true if the target supports strided load.
TargetTransformInfo & operator=(TargetTransformInfo &&RHS)
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF=FastMathFlags(), TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef< Type * > &Types) const
bool enableSelectOptimize() const
Should the Select Optimization pass be enabled and ran.
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
Return any intrinsic address operand indexes which may be rewritten if they use a flat address space ...
OperandValueProperties
Additional properties of an operand's values.
InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const PointersChainInfo &Info, Type *AccessTy, TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Estimate the cost of a chain of pointers (typically pointer operands of a chain of loads or stores wi...
bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
bool isSourceOfDivergence(const Value *V) const
Returns whether V is a source of divergence.
bool isLegalICmpImmediate(int64_t Imm) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
bool isTypeLegal(Type *Ty) const
Return true if this type is legal.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const
std::optional< unsigned > getCacheAssociativity(CacheLevel Level) const
bool isLegalNTLoad(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal load.
InstructionCost getMemcpyCost(const Instruction *I) const
unsigned adjustInliningThreshold(const CallBase *CB) const
bool isLegalAddImmediate(int64_t Imm) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const
Return true if the target can save a compare for loop count, for example hardware loop saves a compar...
bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
Rewrite intrinsic call II such that OldV will be replaced with NewV, which has a different address sp...
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const
unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const
Some HW prefetchers can handle accesses up to a certain constant stride.
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags Flags) const
InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
bool shouldPrefetchAddressSpace(unsigned AS) const
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
Return the expected cost of materializing for the given integer immediate of the specified type.
unsigned getMinVectorRegisterBitWidth() const
bool isLegalNTStore(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal store.
unsigned getFlatAddressSpace() const
Returns the address space ID for a target's 'flat' address space.
bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const
It can be advantageous to detach complex constants from their uses to make their generation cheaper.
bool hasArmWideBranch(bool Thumb) const
const char * getRegisterClassName(unsigned ClassID) const
bool preferEpilogueVectorization() const
Return true if the loop vectorizer should consider vectorizing an otherwise scalar epilogue loop.
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const
BranchProbability getPredictableBranchThreshold() const
If a branch or a select condition is skewed in one direction by more than this factor,...
unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace=0, Align Alignment=Align(1), unsigned *Fast=nullptr) const
Determine if the target supports unaligned memory accesses.
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
bool hasActiveVectorLength(unsigned Opcode, Type *DataType, Align Alignment) const
unsigned getEpilogueVectorizationMinVF() const
PopcntSupportKind
Flags indicating the kind of support for population count.
InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) const
Return the expected cost for the given integer when optimising for size.
AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
Return the preferred addressing mode LSR should make efforts to generate.
bool isLoweredToCall(const Function *F) const
Test whether calls to a function lower to actual program function calls.
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
Query the target whether it would be profitable to convert the given loop into a hardware loop.
unsigned getInliningThresholdMultiplier() const
InstructionCost getBranchMispredictPenalty() const
Returns estimated penalty of a branch misprediction in latency.
unsigned getNumberOfRegisters(unsigned ClassID) const
bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const
Return true if this is an alternating opcode pattern that can be lowered to a single instruction on t...
bool isProfitableToHoist(Instruction *I) const
Return true if it is profitable to hoist instruction in the then/else to before if.
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
Return true if the given instruction (assumed to be a memory access instruction) has a volatile varia...
bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const
Return true if the target supports masked compress store.
std::optional< unsigned > getMinPageSize() const
bool isFPVectorizationPotentiallyUnsafe() const
Indicate that it is potentially unsafe to automatically vectorize floating-point operations because t...
bool isLegalMaskedStore(Type *DataType, Align Alignment) const
Return true if the target supports masked store.
bool shouldBuildRelLookupTables() const
Return true if lookup tables should be turned into relative lookup tables.
unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const
std::optional< unsigned > getCacheSize(CacheLevel Level) const
std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
Can be used to implement target-specific instruction combining.
bool isLegalAddScalableImmediate(int64_t Imm) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const
Identifies if the vector form of the intrinsic has a scalar operand.
bool hasDivRemOp(Type *DataType, bool IsSigned) const
Return true if the target has a unified operation to calculate division and remainder.
InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Returns the cost estimation for alternating opcode pattern that can be lowered to a single instructio...
TargetCostConstants
Underlying constants for 'cost' values in this interface.
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Free
Expected to fold away in lowering.
@ TCC_Basic
The cost of a typical 'add' instruction.
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
bool enableInterleavedAccessVectorization() const
Enable matching of interleaved access groups.
unsigned getMinTripCountTailFoldingThreshold() const
InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
unsigned getMaxInterleaveFactor(ElementCount VF) const
bool isVectorShiftByScalarCheap(Type *Ty) const
Return true if it's significantly cheaper to shift a vector by a uniform scalar than by an amount whi...
bool isNumRegsMajorCostOfLSR() const
Return true if LSR major cost is number of registers.
unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const
bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const
unsigned getGISelRematGlobalCost() const
unsigned getNumBytesToPadGlobalArray(unsigned Size, Type *ArrayType) const
MemIndexedMode
The type of load/store indexing.
@ MIM_PostInc
Post-incrementing.
@ MIM_PostDec
Post-decrementing.
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
bool useColdCCForColdCall(Function &F) const
Return true if the input function which is cold at all call sites, should use coldcc calling conventi...
InstructionCost getFPOpCost(Type *Ty) const
Return the expected cost of supporting the floating point operation of the specified type.
bool supportsTailCalls() const
If the target supports tail calls.
bool canMacroFuseCmp() const
Return true if the target can fuse a compare and branch.
Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) const
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Query the target whether the specified address space cast from FromAS to ToAS is valid.
unsigned getNumberOfParts(Type *Tp) const
bool hasConditionalLoadStoreForType(Type *Ty=nullptr) const
InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, PartialReductionExtendKind OpAExtend, PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp=std::nullopt) const
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0) const
Return the cost of the scaling factor used in the addressing mode represented by AM for this target,...
bool isTruncateFree(Type *Ty1, Type *Ty2) const
Return true if it's free to truncate a value of type Ty1 to type Ty2.
bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
Return true if sinking I's operands to the same basic block as I is profitable, e....
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize=std::nullopt) const
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
Query the target whether it would be prefered to create a predicated vector loop, which can avoid the...
bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.scatter intrinsics.
bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
bool haveFastSqrt(Type *Ty) const
Return true if the hardware has a fast square-root instruction.
bool shouldExpandReduction(const IntrinsicInst *II) const
TargetTransformInfo(T Impl)
Construct a TTI object using a type implementing the Concept API below.
uint64_t getMaxMemIntrinsicInlineSizeThreshold() const
Returns the maximum memset / memcpy size in bytes that still makes it profitable to inline the call.
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index=-1, Value *Op0=nullptr, Value *Op1=nullptr) const
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) const
Get target-customized preferences for the generic loop peeling transformation.
InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency) const
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
OperandValueKind
Additional information about an operand's possible values.
CacheLevel
The possible cache levels.
bool isLegalMaskedLoad(Type *DataType, Align Alignment) const
Return true if the target supports masked load.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition: Value.h:74
Base class of all SIMD vector types.
Definition: DerivedTypes.h:427
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
bool areInlineCompatible(const Function &Caller, const Function &Callee)
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Type
MessagePack types as defined in the standard, with the exception of Integer being divided into a sign...
Definition: MsgPackReader.h:53
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Length
Definition: DWP.cpp:480
@ None
Definition: CodeGenData.h:106
AtomicOrdering
Atomic ordering for LLVM's memory model.
TargetTransformInfo TTI
ImmutablePass * createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)
Create an analysis pass wrapper around a TTI object.
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:217
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1873
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition: PassManager.h:92
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:28
Attributes of a target dependent hardware loop.
bool canAnalyze(LoopInfo &LI)
bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
Information about a load/store intrinsic defined by the target.
Value * PtrVal
This is the pointer that the intrinsic is loading from or storing to.
InterleavedAccessInfo * IAI
TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL, InterleavedAccessInfo *IAI)
TargetLibraryInfo * TLI
LoopVectorizationLegality * LVL
unsigned Insns
TODO: Some of these could be merged.
Returns options for expansion of memcmp. IsZeroCmp is.
bool AllowPeeling
Allow peeling off loop iterations.
bool AllowLoopNestsPeeling
Allow peeling off loop iterations for loop nests.
bool PeelProfiledIterations
Allow peeling basing on profile.
unsigned PeelCount
A forced peeling factor (the number of bodied of the original loop that should be peeled off before t...
Describe known properties for a set of pointers.
unsigned IsKnownStride
True if distance between any two neigbouring pointers is a known value.
unsigned IsUnitStride
These properties only valid if SameBaseAddress is set.
unsigned IsSameBaseAddress
All the GEPs in a set have same base address.
Flags describing the kind of vector reduction.
bool IsSigned
Whether the operation is a signed int reduction.
bool IsMaxOp
If the op a min/max kind, true if it's a max operation.
bool NoNaN
If op is an fp min/max, whether NaNs may be present.
Parameters that control the generic loop unrolling transformation.
unsigned Count
A forced unrolling factor (the number of concatenated bodies of the original loop in the unrolled loo...
bool UpperBound
Allow using trip count upper bound to unroll loops.
unsigned Threshold
The cost threshold for the unrolled loop.
bool Force
Apply loop unroll on any kind of loop (mainly to loops that fail runtime unrolling).
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
unsigned DefaultUnrollRuntimeCount
Default unroll count for loops with run-time trip count.
unsigned MaxPercentThresholdBoost
If complete unrolling will reduce the cost of the loop, we will boost the Threshold by a certain perc...
unsigned SCEVExpansionBudget
Don't allow runtime unrolling if expanding the trip count takes more than SCEVExpansionBudget.
unsigned UnrollAndJamInnerLoopThreshold
Threshold for unroll and jam, for inner loop size.
unsigned MaxIterationsCountToAnalyze
Don't allow loop unrolling to simulate more than this number of iterations when checking full unroll ...
bool AllowRemainder
Allow generation of a loop remainder (extra iterations after unroll).
bool UnrollAndJam
Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollRemainder
Allow unrolling of all the iterations of the runtime loop remainder.
unsigned FullUnrollMaxCount
Set the maximum unrolling factor for full unrolling.
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).
bool AllowExpensiveTripCount
Allow emitting expensive instructions (such as divisions) when computing the trip count of a loop for...
unsigned MaxUpperBound
Set the maximum upper bound of trip count.
VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)