Browse free open source Python Algorithms and projects below. Use the toggles on the left to filter open source Python Algorithms by OS, license, language, programming language, and project status.

  • Auth for GenAI | Auth0 Icon
    Auth for GenAI | Auth0

    Enable AI agents to securely access tools, workflows, and data with fine-grained control and just a few lines of code.

    Easily implement secure login experiences for AI Agents - from interactive chatbots to background workers with Auth0. Auth for GenAI is now available in Developer Preview
    Try free now
  • Red Hat Enterprise Linux on Microsoft Azure Icon
    Red Hat Enterprise Linux on Microsoft Azure

    Deploy Red Hat Enterprise Linux on Microsoft Azure for a secure, reliable, and scalable cloud environment, fully integrated with Microsoft services.

    Red Hat Enterprise Linux (RHEL) on Microsoft Azure provides a secure, reliable, and flexible foundation for your cloud infrastructure. Red Hat Enterprise Linux on Microsoft Azure is ideal for enterprises seeking to enhance their cloud environment with seamless integration, consistent performance, and comprehensive support.
    Learn More
  • 1
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms, deep learning and transfer learning. FATE became open-source in February 2019. FATE TSC was established to lead FATE open-source community, with members from major domestic cloud computing and financial service enterprises. FedAI is a community that helps businesses and organizations build AI models effectively and collaboratively, by using data in accordance with user privacy protection, data security, data confidentiality and government regulations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    The LisBON Framework is an adaptable framework for developing new parallel Memetic Algorithms (hybrid search algorithms for efficiently solving optimisation problems).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Math tools in Python to tackle down problems in Operational Research fields. Comes with a Django based web interface to allow remote access to complex simulation means.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PyPlayground is an environment for developing algorithms involving movement in a space of up to three dimensions using Python.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 5
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural network-based models, e.g., AutoEncoders, which are implemented in both PyTorch and Tensorflow. PyOD contains multiple models that also exist in scikit-learn. It is possible to train and predict with a large number of detection models in PyOD by leveraging SUOD framework. A benchmark is supplied for select algorithms to provide an overview of the implemented models. In total, 17 benchmark datasets are used for comparison, which can be downloaded at ODDS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Design and develop Recommendation and Adaptive Prediction Engines to address eCommerce opportunities. Build a portfolio of engines by creating and porting algorithms from multiple disciplines to a usable form. Try to solve NetFlix and other challenges.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.