
- Python Data Science - Home
- Python Data Science - Getting Started
- Python Data Science - Environment Setup
- Python Data Science - Pandas
- Python Data Science - Numpy
- Python Data Science - SciPy
- Python Data Science - Matplotlib
- Python Data Operations
- Python Data cleansing
- Python Processing CSV Data
- Python Processing JSON Data
- Python Processing XLS Data
- Python Relational databases
- Python NoSQL Databases
- Python Date and Time
- Python Data Wrangling
- Python Data Aggregation
- Python Reading HTML Pages
- Python Processing Unstructured Data
- Python word tokenization
- Python Stemming and Lemmatization
- Python Data Visualization
- Python Chart Properties
- Python Chart Styling
- Python Box Plots
- Python Heat Maps
- Python Scatter Plots
- Python Bubble Charts
- Python 3D Charts
- Python Time Series
- Python Geographical Data
- Python Graph Data
Python - Normal Distribution
The normal distribution is a form presenting data by arranging the probability distribution of each value in the data.Most values remain around the mean value making the arrangement symmetric.
We use various functions in numpy library to mathematically calculate the values for a normal distribution. Histograms are created over which we plot the probability distribution curve.
import matplotlib.pyplot as plt import numpy as np mu, sigma = 0.5, 0.1 s = np.random.normal(mu, sigma, 1000) # Create the bins and histogram count, bins, ignored = plt.hist(s, 20, normed=True) # Plot the distribution curve plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp( - (bins - mu)**2 / (2 * sigma**2) ), linewidth=3, color='y') plt.show()
Its output is as follows −

Advertisements