はてなキーワード: 1次元とは
超弦理論を物理的な実体(ひもや粒子)から引き剥がし、抽象数学の言葉で抽象化すると、圏論と無限次元の幾何学が融合した世界が現れる。
物理学者がひもの振動と呼ぶものは、数学者にとっては代数構造の表現や空間のトポロジー(位相)に置き換わる。
物理的なイメージである時空を動くひもを捨てると、最初に現れるのは複素幾何学。
ひもが動いた軌跡(世界面)は、数学的にはリーマン面という複素1次元の多様体として扱われる。
ひもの散乱振幅(相互作用の確率)を計算することは、異なる穴の数を持つすべてのリーマン面の集合、すなわちモジュライ空間上での積分を行うことに帰着。
ひもがどう振動するかという物理的ダイナミクスは幾何学的な形すら消え、代数的な対称性だけが残る。
共形場理論(CFT)。頂点作用素代数。ひもはヴィラソロ代数と呼ばれる無限次元リー環の表現論として記述される。粒子とは、この代数の作用を受けるベクトル空間の元に過ぎない。
1990年代以降、超弦理論はDブレーンの発見により抽象化された。
ミラー対称性。全く異なる形状の空間(AとB)が、物理的には等価になる現象。ホモロジカルミラー対称性。
Maxim Kontsevichによって提唱された定式化では、物理的背景は完全に消え去り、2つの異なる圏の等価性として記述される。
もはや空間が存在する必要はなく、その空間上の層の間の関係性さえあれば、物理法則は成立するという抽象化。
トポロジカルな性質のみを抽出すると、超弦理論はコボルディズムとベクトル空間の間の関手になる。
このレベルでは、物質も力も時間も存在せず、あるのはトポロジー的な変化が情報の変換を引き起こすという構造のみ。
超弦理論を究極まで数学的に抽象化すると、それは物質の理論ではなく、無限次元の対称性を持つ、圏と圏の間の双対性になる。
より専門的に言えば、非可換幾何学上の層の圏や高次圏といった構造が、我々が宇宙と呼んでいるものの正体である可能性が高い。
そこでは点 という概念は消滅し、非可換な代数が場所の代わりになる。
存在 はオブジェクトではなく、オブジェクト間の射によって定義される。
物理的なひもは、究極的には代数的構造(関係性)の束へと蒸発し、宇宙は巨大な計算システム(または数学的構造そのもの)として記述される。
僕はいつものようにティーカップの正確な角度とティーバッグを引き上げるタイミング(45秒で引き上げ、分子運動が落ち着くのを確認する)にこだわりながら、ルームメイトがキッチンで不満げに微かに鼻歌を歌う音を聞いている。
隣人は夜遅くまでテレビを見ているらしく、ローファイのビートとドラマのセリフが建物内で交差する。
その雑音の中で僕の頭は例によって超弦理論の抽象化へと跳躍した。
最近は量子コヒーレンスをホモトピー的に扱う試みを続けていて、僕は弦空間を単に1次元媒介物と見るのではなく、∞-圏の内在的自己双対性を有する位相的モジュライ空間として再定義することを好む。
具体的には、標準的な共形場理論の配位子作用をドリブンな導来代数的幾何(derived algebraic geometry)の枠組みで再構成し、そこにモチーフ的な圏(motivic category)から引き戻した混合ホッジ構造を組み込んで、弦の振る舞いを圏論的に拡張された交代多様体のホモトピー的点として記述する考えを試している。
こうするとT-双対性は単に物理的対象の同値ではなく、ある種のエンドサイト(endomorphism)による自己同型として見なせて、鏡像対称性の一部が導来関手の自然変換として表現できる。
さらに一歩進めて、超対称性生成子を高次トポスの内部対象として取り扱い、グレーディングを∞-グループとして扱うと、古典的に局所化されていたノイズ項が可換的モジュール層の非可換微分形へと遷移することが示唆される。
もちろんこれは計算可能なテーラ展開に落とし込まなければ単なる言葉遊びだが、僕はその落とし込みを行うために新しく定義した超可換導来ホッジ複体を用いて、散発的に出現する非正則極を規格化する策略を練っている。
こういう考察をしていると、僕の机の横に無造作に積まれたコミックやTCG(トレーディングカードゲーム)のパックが逆説的に美しく見える。
今日はルームメイトと僕は、近日発売のカードゲームのプレビューとそれに伴うメタ(試合環境)について議論した。
ウィザーズ・オブ・ザ・コーストの最新のAvatar: The Last Airbenderコラボが今月中旬にアリーナで先行し、21日に実物のセットが出るという話題が出たので、ルームメイトは興奮してプリリリースの戦略を立てていた。
僕は「そのセットが実物とデジタルで時間差リリースされることは、有限リソース制約下でのプレイヤー行動の確率分布に重要な影響を与える」と冷静に分析した(発表とリリース日程の情報は複数の公表情報に基づく)。
さらにポケモンTCGのメガ進化系の新シリーズが最近動いていると聞き、友人たちはデッキの再構築を検討している。
TCGのカードテキストとルールの細かな改変は、ゲーム理論的には期待値とサンプル複雑度を変えるため、僕は新しいカードが環境に及ぼすインパクトを厳密に評価するためにマルコフ決定過程を用いたシミュレーションを回している(カード供給のタイムラインとデジタル実装に関する公式情報は確認済み)。
隣人が「またあなたは細かいことを考えているのね」と呆れた顔をして窓越しにこちらを見たが、僕はその視線を受け流して自分のこだわり習慣について書き留める。
例えば枕の向き、靴下の重ね方(常に左を上にし、縫い目が内側に来るようにすること)、コーヒー粉の密度をグラム単位で揃えること、そして会話に入る際は必ず正しい近接順序を守ること。
これらは日常のノイズを物理学的に最適化するための小さな微分方程式だと僕は考えている。
夜は友人二人とオンラインでカードゲームのドラフトを少しだけやって、僕は相対的価値の高いカードを確保するために結合確率を厳密に計算したが、友人たちは「楽しければいい」という実に実務的な感覚で動くので、そこが僕と彼らの恒常的なズレだ。
今日はD&D系の協働プロジェクトの話題も出て、最近のStranger ThingsとD&Dのコラボ商品の話(それがテーブルトークの新しい入り口になっているという話題)はテーブルトップコミュニティに刺激を与えるだろうという点で僕も同意した。
こうして夜は深まり、僕はノートに数式とカートゥーンの切り抜きを同じページに貼って対照させるという趣味を続け、ルームメイトはキッチンで皿を洗っている。
今、時計は23:00を指している。僕は寝る前に、今日考えた∞-圏的弦動力学のアイデアをもう一度走査して、余剰自由度を取り除くための正則化写像の候補をいくつか書き残しておく。
弦は1次元の振動体ではなく、スペクトル的係数を持つ(∞,n)-圏の対象間のモルフィズム群として扱われる量子幾何学的ファンクタであり、散乱振幅は因子化代数/En-代数のホモトピー的ホモロジー(factorization homology)と正の幾何(amplituhedron)およびトポロジカル再帰の交差点に現れるという観点。
従来のσモデルはマップ:Σ → X(Σは世界面、Xはターゲット多様体)と見るが、最新の言い方では Σ と X をそれぞれ導来(derived)モジュライ空間(つまり、擬同調的情報を含むスタック)として扱い、弦はこれら導来スタック間の内部モルフィズムの同値類とする。これによりボルツマン因子や量子的補正はスタックのコヒーレント層や微分グレード・リー代数のcohomologyとして自然に現れる。導来幾何学の教科書的基盤がここに使われる。
弦の結合・分裂は単なる局所頂点ではなく、高次モノイド構造(例えば(∞,2)あるいは(∞,n)級のdaggerカテゴリ的構成)における合成則として表現される。位相欠陥(defects)やDブレインはその中で高次射(higher morphism)を与え、トポロジカル条件やフレーミングは圏の添字(tangential structure)として扱うことで異常・双対性の条件が圏的制約に変わる。これが最近のトポロジカル欠陥の高次圏的記述に対応する。
局所演算子の代数はfactorization algebra / En-algebraとしてモデル化され、散乱振幅はこれらの因子化ホモロジー(factorization homology)と、正の幾何(positive geometry/amplituhedron)的構造の合流点で計算可能になる。つまり「場の理論の演算子代数的内容」+「ポジティブ領域が選ぶ測度」が合わさって振幅を与えるというイメージ。Amplituhedronやその最近の拡張は、こうした代数的・幾何学的言語と直接結びついている。
リーマン面のモジュライ空間への計量的制限(例えばマルザカニの再帰類似)から得られるトポロジカル再帰は、弦場理論の頂点/定常解を記述する再帰方程式として働き、相互作用の全ループ構造を代数的な再帰操作で生成する。これは弦場理論を離散化する新しい組合せ的な生成法を与える。
AdS/CFT の双対性を単なる双対写像ではなく、導来圏(derived categories)やファンクタ間の完全な双対関係(例:カテゴリ化されたカーネルを与えるFourier–Mukai型変換)として読み替える。境界側の因子化代数とバルク側の(∞,n)-圏が相互に鏡像写像を与え合うことで、場の理論的情報が圏論的に移送される。これにより境界演算子の代数的性質がバルクの幾何学的スタック構造と同等に記述される。
パス積分や場の設定空間を高次帰納型(higher inductive types)で捉え、同値関係やゲージ同値をホモトピー型理論の命題等価として表現する。これにより測度と同値の矛盾を型のレベルで閉じ込め、形式的な正則化や再正規化は型中の構成子(constructors)として扱える、という構想がある(近年のHoTTの物理応用ワークショップで議論されている方向性)。
「弦=導来スタック間の高次モルフィズム(スペクトル係数付き)、相互作用=(∞,n)-圏のモノイド合成+因子化代数のホモロジー、振幅=正の幾何(amplituhedron)とトポロジカル再帰が選ぶ微分形式の交差である」
この言い方は、解析的・場の理論的計算を圏論・導来代数幾何・ホモトピー理論・正の幾何学的道具立てで一枚岩にする野心を表しており、実際の計算ではそれぞれの成分(因子化代数・導来コヒーレント層・amplituhedronの体積形式・再帰関係)を具体的に組み合わせていく必要がある(研究は既にこの方向で動いている)。
先天的に耳の聞こえない人は日本語の文章を書くのが苦手な人が多いらしい。なぜなのかを調べずに考えてみる。
1つ、手話には先天的の人向けと中途失聴者向けの2種類がある。後者は日本語なんだけど、前者は日本語と語彙を共有する別言語らしい。つまり生まれながらにしてバイリンガルのような能力を求められる。
2つ、得られる情報量としては聴覚(1次元)よりも視覚(2次元)の方が圧倒的に多いんだけど、強制的に言語情報をぶち込まれるのは目よりも耳の方が圧倒的に多いから。
赤ちゃんでも「目で文字を見て真似て書く」よりも「耳で声を聞いて真似て声を出す」方が先でしょ。耳が聞こえないと言語野が発達しにくいのではないだろうか。
どう?
フッ……よきぞ、若き者よ😏🔥
その不敵な笑み、まさしく深淵を覗く者の器よ。
だが言わせてもらおう——
たとえば、アインシュタインの
E = mc²
この式、見た目はたった5文字。されどその背後には、質量とエネルギーの等価性という宇宙の根源的法則がある。
だがここからが深い。
超弦理論の真なる問いはこうだ:
☑️ 量子力学と相対性理論を矛盾なく融合させるためには、点粒子ではなく、1次元の拡がりを持つ“弦”である必要がある。 点粒子のままだと、重力子(スピン2の粒子)との相互作用が「無限大」になって破綻する。
☑️ 弦理論が無矛盾に定義されるためには、10次元の時空が必要になる(これは量子異常のキャンセル条件から導かれる)。 つまり、「次元の数すら、理論の要請によって決まる」のだ!
抽象数学の頂には、例えばホモトピー型理論(HoTT)、∞-圏(インフィニティけん)、そしてモチーフ理論などがある。
これらはただの構造ではない。
まるで、宇宙が言語を持ち、それを“自己参照”で語っているような世界……。
超弦理論:「物質は何でできているか」ではなく「“存在”とは何か」の問い
深淵は常に、シンプルな仮定から生まれる無限の問いへと繋がる。
それが真の深みよ。
1. 量子情報の基本単位: 量子情報は、情報の最小単位である量子ビット(キュービット)から構成される。
2. キュービットの実現: 量子ビットは、重ね合わせや量子もつれといった量子力学固有の現象を示す量子系の状態により実現される。
3. 量子状態の記述: 量子系の状態は、状態ベクトルという数学的対象で表現される。これらの状態ベクトルは、量子系のあらゆる可能な状態を重ね合わせたものを定量的に記述する手段である。
4. ヒルベルト空間の構造: 状態ベクトルは、複素数体上の完全内積空間であるヒルベルト空間の元として定義される。ここでの「完全性」とは、収束列が必ず空間内の元に収束するという性質を意味する。
5. 線形結合による展開: ヒルベルト空間の任意の元は、ある正規直交系(基底ベクトル群)の複素数による線形結合、すなわち加重和として表現される。これにより、量子状態の重ね合わせが数学的に実現される。
6. 基底の物理的対応: この基底ベクトルは、量子場理論における各モードの励起状態(例えば、特定のエネルギー状態や粒子生成の状態)に対応すると解釈される。すなわち、基底自体は場の具体的な励起状態の数学的表現である。
7. 量子場の構成: 量子場は、基本粒子の生成や消滅を記述するための場であり、場の各励起状態が個々の粒子として現れる。これにより、量子系の背後にある物理現象が説明される。
8. 時空との関係: 量子場は、背景となる時空上に定義され、その振る舞いは時空の幾何学や局所的な相互作用規則に従う。時空は単なる固定の舞台ではなく、場合によっては場の性質に影響を与える要因ともなる。
9. 統一理論への展開: さらに、量子場と時空の相互作用は、重力を含む統一理論(たとえば超弦理論)の枠組みで考察される。ここでは、時空の微細構造や場の振る舞いが、より根源的な1次元の弦(超弦)の動的性質に起因していると考えられている。
10. 超弦の根源性: 超弦理論では、弦は現時点で知られる最も基本的な構成要素とされるが、現段階では「超弦自体が何から作られているか」については明確な説明が存在しない。つまり、超弦はさらなる下位構造を持つのか、またはそれ自体が最終的な基本実在なのかは未解明である。
以上のように、量子情報は量子ビットという実際の物理系の状態に端を発し、その状態が数学的に状態ベクトルやヒルベルト空間という構造の上に定式化され、さらに量子場理論や統一理論の枠組みの中で、時空や超弦といったより根源的な構成要素と結びついていると考えられる。
追記2
近くにブラジリアン柔術のジムがあるようで、そこに明日体験行ってくるよ
カードゲーム、やってみる
--
ネトフリとかでアニメ見ても、どうせ見れる量にも限度があるし、これ以外にも似たような・同程度の面白さの作品なんかいくらでもあるし、3か月ごとにそれがどんどん増えていくんだろ?と思うとなんかどうでもよくなってくる。
もちろんゲーム・ドラマ・映画・漫画等にも言えて、これからさらにコンテンツ供給量が増えていくのにまあ確かに多少時間はつぶせる程度のこのコンテンツを見ててなんか意味ある?という気持ちになっちゃう。
やっぱりコミュニティに所属して人との会話こそが一番のコンテンツという気がしている。
以下の条件を満たせるようなものが欲しいんだよな。
・会話がある
・飽きない
・毎日できる
・70歳過ぎてもできる
・それについて成長がある
例えばいくつか例にあげるとこんな感じ
#勉強
・会話はない
・興味があるテーマがあれば飽きない
・テーマを探さないといけない段階から始めるのはすでに駄目そう
・ソフトウェアエンジニアだけど興味の範囲を増やしたところで10年も勉強の興味を持ち続けられないと思う
・毎日できる
・1日1時間とかであればできそう
・一生できる
・知識は間違いなく一生増やせる
・会話ある
・飽きない
・せいぜい1週間に1度程度しかできない
・安定したメンバー確保が必要(フットサルで3対3で6人など)
・何年でもできる
・できる
・多少うまくなったことを実感できるものの、半年前に比べてこれくらいうまくなったという指標がない気がする
・仮に勝利を重視してる社会人チームがあったとしても毎年勝利数が増えるみたいなチームってないと思うのでどこで実感?
#自転車
・サークル的なところに入れば会話ある
・せいぜい2週間に1回くらいか
・コースが限られる
・電車とか飛行機に持ち込んで乗るにもそんなのはせいぜい年5回程度
・毎日できる
・何年もできる
・できる
・この陸上的な1次元の成長パラメータだけでやり続けられるのか?
・会話がある
・対人なので会話もあるしコミュニティもある
・飽きない
・毎日できる
・70歳過ぎてもできる
・できるが、新しいカードゲームが出てそちらに人が流れるとそれまでやってた知識が何も生かせなくなる
・同様の理由でFPS的なEスポーツゲームもそこまでのめりこめない。一生カウンターストライクをやり続けるわけにもいかないので
なんかおすすめ教えて
まず「特殊相対性理論」からやけど、これは光の速さがどんな状況でも変わらんってことが基本やねん。
たとえば、電車が走っとる中で懐中電灯を前に向けて光らしても、外でじっとしてる人が見た光の速さも同じやねん。
でも光の速さだけは、どんなに速く動いても変わらんのや。
ほんで、この理論やと「時間」や「空間」も相対的に変わるっちゅうことになる。
速く動くほど時間が遅くなるんや。これを「時間の遅れ」っていうねん。
例えて言うたら、宇宙船でめっちゃ速く移動してる人は、地球におる人に比べてゆっくり年を取る、みたいな感じや。
次に「一般相対性理論」やけど、こっちは重力が関わってくるねん。
簡単に言うたら、重いもんが空間をぐにゃっと曲げるっちゅうことや。
たとえば、地球みたいなでっかいもんがあると、その周りの空間が曲がって、そこに他のもんが引っ張られるから「重力」が生まれるんや。
まあ、ざっくり言うたらこんな感じやけど、ほんまはもっと複雑なんやで。
(もう少し詳しく教えてください)
ほな、もうちょっと深くいこか。
まず、「特殊相対性理論」についてやけど、これを理解するには「光の速さが一定」っちゅうのがどんだけすごいことか、ちゃんとわかっとかなあかん。
普通の物体は、速く動けば動くほど、その速さは他のもんに足されるやろ?
例えば、車が時速50キロで走っとって、その車の上からボールを前に時速20キロで投げたら、ボールは時速70キロで進むことになる。
せやけど、光は違うんや。どんな状況でも、どんなに速く動いとっても、光の速さは毎回秒速約30万キロメートルで一定やねん。
ほんなら、何が変わるんや?って話やけど、答えは「時間」と「空間」や。
速く動けば動くほど、時間は遅く流れるし、移動してる方向の長さは縮んでしまう。
具体的な例を出すと、もし君が光の速さにめっちゃ近いスピードで宇宙船に乗って1年旅したとしようや。
地球におる人らからしたら、その1年が例えば10年にも20年にも感じられるかもしれん。
つまり、君は歳をとらんけど、地球では時間がめっちゃ進んどるわけや。これが「時間の遅れ」や。
ほんで、次は「一般相対性理論」やけど、これはもうちょっと難しい話やねん。
特殊相対性理論は光とかスピードに注目してたけど、こっちは「重力」に焦点を当てとるんや。
重力っちゅうのは、普通に考えたら物体が引っ張り合う力やと思うやろ?でもアインシュタインはそれを「空間と時間が曲がるせい」やって言うたんや。
地球みたいな大きな質量を持っとるもんは、その周りの空間をぐにゃっと曲げるんや。これを「時空の歪み」っちゅうねん。
で、その歪んだ空間に沿って、他の物体が動くことで、まるで引っ張られてるように見えるっちゅうわけや。これが「重力」の正体や。
ゴムシートの上に重いボールを置いたら、シートがへこんで周りにくぼみができるやろ?そのくぼみに他の小さいボールを置くと、転がって重いボールに引き寄せられる。これが重力のイメージや。
太陽とか地球みたいなでっかいもんが周りの時空をへこませて、そこに他の天体が引っ張られるわけやな。
重力が強い場所ほど時間はゆっくり流れる、これを「重力による時間の遅れ」っちゅうねん。
例えば、地球の表面におる人と宇宙の遠くにおる人では、地球の表面のほうが重力が強いから、時間がわずかに遅く流れるんや。
これらの理論がなんで重要かっちゅうと、GPSとか人工衛星みたいなもんは、めっちゃ速いスピードで地球の周りを回っとるやろ?
そのために時間が遅くなってるし、地球の重力も影響を与えとるんや。
せやから、相対性理論を使ってそのズレを計算して補正せんと、正確な位置情報は得られへんねん。
ほんなわけで、相対性理論っちゅうのは、宇宙全体の「時間」や「空間」、そして「重力」がどう動くかを説明するめっちゃすごい理論なんや。
(では最後に、相対性理論と超ひも理論の関係を教えてください)
まず、相対性理論っていうのは、さっきも話した通り、重力を扱う理論やね。
特に「一般相対性理論」やと、重いもんが時空を曲げることで重力が発生する、っちゅうふうに説明しとるわけやな。
これは大きなスケール、例えば星とか銀河、宇宙全体を説明するのにめっちゃ強力な理論や。
けどな、宇宙には重力だけやなくて、他にも4つの基本的な力があんねん。
重力に加えて、電磁気力、強い核力、弱い核力っちゅうもんがあるんや。
相対性理論は重力には強いんやけど、他の力、特に小さいスケールの話になってくると話がちゃうねん。
原子とか素粒子みたいなめっちゃ小さいもんを扱うのは量子力学っちゅう別の理論が必要になる。
ここが問題なんや。相対性理論と量子力学っちゅうのは、どっちもめっちゃ成功してる理論やけど、整合性が取れへんねん。
大きいスケールやと相対性理論、小さいスケールやと量子力学、って分かれとるわけや。
でも宇宙全体を一つの理論で説明したいなら、両方をつなげる必要がある。
これを統一理論とか万物の理論っちゅうんやけど、これがまだうまくいってへんねん。
そこで出てくるんが超ひも理論や。
超ひも理論っていうのは、宇宙にある全ての物質や力が、ひも状のものからできてるっちゅう考え方やねん。
普通、素粒子は点みたいなもんやと思われとるやろ?でも超ひも理論では、実はそれがめっちゃ小さい「ひも」やっていうんや。
このひもが振動することで、違う性質の粒子になったり、力を生み出したりするっちゅう考え方や。
なんでこれがすごいんかっていうと、この理論は重力と量子力学を一緒に扱えるんや!
つまり、相対性理論で扱ってた重力も、量子力学で扱ってる小さいスケールの現象も、ひもの振動っていう一つの仕組みで説明できるようになるかもしれんって話や。
相対性理論と量子力学の一番の問題は、重力を量子化できひんってことや。
量子力学は確率的な世界やけど、相対性理論は連続した空間を扱う理論やから、この2つが衝突してしまうんや。
特に問題になるんが、ブラックホールとかビッグバンみたいなめっちゃ極端な状況や。
そこでは重力もめっちゃ強くなるし、量子効果も無視できへん。せやけど、これらを同時に説明できる理論がまだないんや。
そこで超ひも理論が登場するんやけど、ひもがめっちゃ小さいスケールでは、重力の量子化も可能になるっちゅうわけや。
つまり、相対性理論が扱ってる「大きなスケールでの重力」と、量子力学が扱う「めっちゃ小さいスケールの力」を同時に説明できるっちゅうことや。
ただしやな、超ひも理論はまだ理論段階で、実験で直接確認されたわけやないんや。
それに、超ひも理論が正しいと仮定すると、宇宙には我々が感じ取れん11次元も存在するっちゅう話になる。
今のところ、わしらが日常的に感じるのは3次元の空間と1次元の時間だけやけど、残りの次元はめっちゃ小さく「巻き込まれて」るから見えへんらしい。これが正しいかどうかもまだわからんのや。
まとめると
•相対性理論は重力を説明する強力な理論やけど、量子の世界では問題がある。
•超ひも理論は、相対性理論と量子力学を一つの理論でまとめようとするもんで、ひもの振動で全てを説明できるかもしれん。
•ただ、超ひも理論はまだ理論の段階で、実験的には確かめられてへんし、11次元の宇宙とか、ちょっと奇抜な要素も含まれとる。
超ひも理論がほんまに正しいんかどうか、まだまだ謎が多いねんけど、もし解けたら宇宙の全てが一つの理論で説明できるようになるかもしれんって、めっちゃ壮大な話やな!
https://anond.hatelabo.jp/20241008145649