自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 线性代数及其应用1.7.1线性无关(一)

我们从几何的角度来看,两个向量线性相关,则向量呈倍数关系,在笛卡尔坐标系中是不是位于同一条直线上呢?所以我们在面对两个向量的向量组时,当且仅当其中一个向量是另一个向量的倍数的时候,则可以说两个向量。我们在1.5节那一章可以看到,齐次的线性方程组可以把它写成向量的形式,这个时候的研究重点就从。当我们遇上只有一个或者两个向量的向量组时,又该如何去判断它的线性相关还是线性无关呢?如果是唯一的,也就是仅有平凡解,那我们就可以说它是线性无关的。展开成了向量方程的形式,那么它的平凡解是否是唯一的?

2025-05-11 16:39:04 342

原创 线性代数及应用1.6线性方程组的应用

1.5.1和1.5.2我们讲了齐次和非齐次的线性方程组,这一节我们就对之前所讲的内容进行一个应用,将它具体化地实施在生活中,或许这样能帮助你更好地理解线性方程组的逻辑。其实在学习和生活中,我们更希望所有的线性方程组大都只有唯一解,甚至是无解。但是不可避免的有多个解的情况,我们现在就以化学方程式的配平来举例。这里我们使用化学领域的一个例子来说明:化学方程组的配平。的全部数量,使得式子左边的各原子总数等于右边。我们来化简改方程的增广矩阵就会得到通解。我们为了配平这个式子,就必须要找到。至此完成方程式的配平。

2025-04-25 17:31:23 205

原创 线性代数及应用1.5.2非齐次线性方程组

实际上,当自由变量多一个的时候,解集就会多一条直线,比如,当我们的自由变量有两个的时候,就会有两条线。在上一节中,我们讨论了线性代数中的齐次线性方程组,我们这节来讲讲非齐次线性方程组。也就是说,当非齐次线性方程组有许多解的时候,他的通解形式可以写成参数向量。的矩阵来展开,它的列数是大于行数的,这也就导致了会有两个自由变量。中,那么他们就是在一个笛卡尔坐标系中的两个向量,他们的系数是。那当我们有两个自由变量,,那么我们结合非齐次线性方程的解的推导则可以写成方程。,类比微积分中的非齐次式,我们可以得到。

2025-04-21 19:50:58 615

原创 线性代数及应用1.5.1齐次线性方程组

看到这期的标题,相信大家又回想起了刚开始学习微积分时被6支配的恐惧吧,熟悉的齐次式和非齐次式真的让人头大。那有的同学就会问了,如果按照类比的思路,非齐次线性方程是不是就是等式的右边不等于0呢?在方程中,齐次指的是等式左边的所有项次数相等,等式右边为0,这是最直观的齐次表现。放在三维空间中,由于u和v不是各个的倍数,所以这个x的构成就是一个平面,他的集为。而对于x,如上所诉,我们会在通解向量中以公因子的形式表达出来,即进行。记住,这里的数字基本是向量的概念,并不是单纯的实数。的倍数呀,我们的平凡解可以由。

2025-03-13 16:48:34 362

原创 线性代数及应用1.4.2矩阵-向量积的性质

我们在上一期简单地聊了一下 矩阵方程的计算,引入了矩阵方程的概念。结合之前讲过的向量方程,我们可以得出。那么我们此时拿到了像这样的两个向量。那么我们又想,如果此时有一个常数。,我们又可以进行哪些变形呢?根据如上式子,我们也可以得出。中的向量,自然可以展开成。又会有怎样的变形呢?为了简单计算,我们令。

2025-03-10 22:04:31 228

原创 线性代数及应用1.4.1矩阵方程的计算

的系数矩阵,在前面讲述增广矩阵时,我们讨论过主元和主元列的问题,我们发现如果有解,则增广矩阵的最右列是不能有主元的。根据前一期我们的讨论,线性方程组的三个解决方法,他们的解集都是等价的,所以。在上一期,我们讨论了关于解决线性方程组的第三种方法:矩阵方程。其实就是增广矩阵除开最右列的矩阵,它的每一列可以生成一个。,这是因为元素的个数和矩阵的行数要保持一致。的算式,发现由它生成的线性方程组,是分别由。以此类推,我们会发现一个规律,由于。的计算,大家是不是还在傻傻地列出。的定义,我们不难发现。

2025-01-15 13:23:09 158

原创 线性代数及应用1.4矩阵方程

在这个行矩阵中,每个元素乘上对应的X便成为了一个线性组合。好啦,这期的内容就分享到这里吧,有什么不懂的大家可以在37的后台留言哟~今天给大家带来的是矩阵方程的讲解,这是一种很新颖的线性方程组的表达式。这样,我们便用一种很新的方式将上一期的线性组合重新表达了出来。稍加分析,大家便可看出这是不是一个1行p列的一个行矩阵?注意,列向量的元素需要和行向量的元素保持一致才能配对。既然等价,那我们也会得出解集相同的解释,也就是说,,如果这个式子不等于0,那么这个增广矩阵就无解。是一个m*n的矩阵,它的各列为。

2025-01-13 18:15:14 399

原创 线性代数及应用1.3.1 线性组合的集合

在上述图像中,v并不是u的倍数,所以是两个不共线的向量,表示了三维空间中的一个二维平面。事实上,如果存在一个点b在这个由u和v所构成的平面上,那么这个线性方程组就是有解的。我们在上一期说到,线性代数的一个主要目标就是研究可以作为某一固定向量集合{}的线性组合的所有向量,我们将这些向量的集合用记号来表示就是span{那大家思考一下,如果v是u的倍数,它的几何图像又该怎么画呢?好啦,这期的分享就到这里,有什么不懂的就在37的后台留言吧?的所标量倍数的集合,其中包括0。中的向量,那么span{

2025-01-11 13:40:32 419

原创 线性代数及应用1.3向量方程和线性组合

在我们熟悉的平面直角坐标系中,平面上的每个点都是由实数的有序对来表示和确定的,这个很容易理解,从初中我们刚开始接触到坐标系时就明白了,在由x轴和y轴组合而成的平面上,有序实数对(x,y)便表示了某个点的坐标,那么再结合向量的定义,向量。我们第一次学向量的时候是在高中,当时的向量表示还是(1,2),那它的一些运算法则在我们这里的向量上能否适用呢。我们在空间这个概念中,有着大家熟知的一维,二维和三维,下面我们由二维空间来引入,看一下简单的向量方程。所有两个元素的列矩阵,也就是向量的集合,我们称之为。

2025-01-10 20:11:52 2010

原创 线性代数及应用1.2.3存在与唯一性问题

根据之前讲的基本变量和自由变量,我们可以区分出,X1,X2,X5是基本变量,X3,X4是自由变量。但是,我们解出的阶梯型中,没有出现像0 = 1的情况,这种情况会造成方程组的不相容,也就是无解。在前面的1.1节我们就讨论过,线性方程组有两个基本的问题,大家是否还有印象呢?这就很简单啦,只要有至少一个自由变量的存在,那么方程组的解就不止一个。当一个方程组化为了阶梯型,并且不包含0 = b(b不等于0)的方程时,:若它有解,它是否只有一个解,即解是否唯一?那么,这个时候我们就可以说,方程组有唯一解。

2025-01-08 18:05:58 257

原创 线性代数及其应用 1.2.1行化简与阶梯形矩阵

我们在拿到一个矩阵后,经过高斯消元法的计算,化简出最后的简化阶梯型矩阵,会发现先导元素的位置并没有改变,因为简化阶梯型总是唯一的(前面定理1)。这个算法的重要性很高,是1.1节中我们谈到的行变化算法的一种精化!不管这个矩阵是不是某一线性方程组的增广矩阵,行化简算法都适用。我们可以很清晰地看出,阶梯型矩阵的先导元素不一定为1,而简化阶梯型矩阵的先导函数一定为1。经过高斯变换后我们能清晰的看到,阶梯型A中,一,二,四列是主元列,主元是1,2,-5。有了这个了解,我们就可以引入两类矩阵来讨论任意矩阵了。

2025-01-07 19:09:24 855

原创 线性代数及其应用 1.2.2线性方程组的解

这里方程组的解集其实并不是为了解出某个确切的值,而是解出一个能让方程组相容的值,所以尽管基本变量会随着自由变量的改变而改变,但它是否相容是不变的。既然有多个自由变量,那我们就都写上去,管他自由变量有多少个,反正也是随意取值,到最后解出来的方程组该相容还是相容,不相容还是不相容。3737,你刚刚说的自由变量不会影响方程组的结果,为什么基本变量还是会因为自由变量的变化而变化呢?存在,所以X3的不同选择决定了方程组不同的解集,每一个解都由X3的值的选择而发生变化。我们说的线性方程组的解,其实就是说的方程组是否。

2025-01-07 19:08:40 385

原创 线性代数及其应用 1.1线性方程组

那么,有些细心的朋友可能会意识到,我们可以将某一方程两边同时乘以常数c,那也可以将变换后的方程两边同时除以常数c得到原方程,同理,面对两个倍加变换的方程,把其中一个方程的c倍减去也会得到原来的方程,这个有趣的性质就是。我们知道,矩阵包含了行和列,比如上面的增广矩阵就是一个3行4列的矩阵.那么矩阵的维数就说明了它包含的行数和列数。我们线性方程组的思路一般是用一个更容易解的等价方程组来替代原来的方程组,粗略的概括就是我们用方程组中含有。欧克,我们现在已经学会了解方程组的基本写法,下面来学习一下解方程组的思路。

2024-04-21 11:16:10 1759 1

原创 力扣数组题型--26题 删除有序数组中的重复项

很简单,如果我们找到两个相同数据的节点,用该节点的后继节点nums[j + 1]去覆盖删除的话,当 j 遍历到最后一个节点时,会发生数组越界而报错。如果我们找到两个不相等的数组节点,由于前者必然与前驱的数据是一样的,所以我们只需要把 i 指向的节点赋值给 j ,这个时候 i 和 j 所指向的位置是一样的,最后再将 j 的值加1。由于是给定的非严格升序数组,所以我们并不需要再去排序(当然,现实生活中肯定不会给你排好顺序的,所以要先排序,再删除),而是直接查找。如此遍历,最后返回 j 的值就是数组的长度。

2024-04-10 09:34:34 757 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除