
- Python - Home
- Python - Overview
- Python - History
- Python - Features
- Python vs C++
- Python - Hello World Program
- Python - Application Areas
- Python - Interpreter
- Python - Environment Setup
- Python - Virtual Environment
- Python - Basic Syntax
- Python - Variables
- Python - Data Types
- Python - Type Casting
- Python - Unicode System
- Python - Literals
- Python - Operators
- Python - Arithmetic Operators
- Python - Comparison Operators
- Python - Assignment Operators
- Python - Logical Operators
- Python - Bitwise Operators
- Python - Membership Operators
- Python - Identity Operators
- Python - Operator Precedence
- Python - Comments
- Python - User Input
- Python - Numbers
- Python - Booleans
- Python - Control Flow
- Python - Decision Making
- Python - If Statement
- Python - If else
- Python - Nested If
- Python - Match-Case Statement
- Python - Loops
- Python - for Loops
- Python - for-else Loops
- Python - While Loops
- Python - break Statement
- Python - continue Statement
- Python - pass Statement
- Python - Nested Loops
- Python Functions & Modules
- Python - Functions
- Python - Default Arguments
- Python - Keyword Arguments
- Python - Keyword-Only Arguments
- Python - Positional Arguments
- Python - Positional-Only Arguments
- Python - Arbitrary Arguments
- Python - Variables Scope
- Python - Function Annotations
- Python - Modules
- Python - Built in Functions
- Python Strings
- Python - Strings
- Python - Slicing Strings
- Python - Modify Strings
- Python - String Concatenation
- Python - String Formatting
- Python - Escape Characters
- Python - String Methods
- Python - String Exercises
- Python Lists
- Python - Lists
- Python - Access List Items
- Python - Change List Items
- Python - Add List Items
- Python - Remove List Items
- Python - Loop Lists
- Python - List Comprehension
- Python - Sort Lists
- Python - Copy Lists
- Python - Join Lists
- Python - List Methods
- Python - List Exercises
- Python Tuples
- Python - Tuples
- Python - Access Tuple Items
- Python - Update Tuples
- Python - Unpack Tuples
- Python - Loop Tuples
- Python - Join Tuples
- Python - Tuple Methods
- Python - Tuple Exercises
- Python Sets
- Python - Sets
- Python - Access Set Items
- Python - Add Set Items
- Python - Remove Set Items
- Python - Loop Sets
- Python - Join Sets
- Python - Copy Sets
- Python - Set Operators
- Python - Set Methods
- Python - Set Exercises
- Python Dictionaries
- Python - Dictionaries
- Python - Access Dictionary Items
- Python - Change Dictionary Items
- Python - Add Dictionary Items
- Python - Remove Dictionary Items
- Python - Dictionary View Objects
- Python - Loop Dictionaries
- Python - Copy Dictionaries
- Python - Nested Dictionaries
- Python - Dictionary Methods
- Python - Dictionary Exercises
- Python Arrays
- Python - Arrays
- Python - Access Array Items
- Python - Add Array Items
- Python - Remove Array Items
- Python - Loop Arrays
- Python - Copy Arrays
- Python - Reverse Arrays
- Python - Sort Arrays
- Python - Join Arrays
- Python - Array Methods
- Python - Array Exercises
- Python File Handling
- Python - File Handling
- Python - Write to File
- Python - Read Files
- Python - Renaming and Deleting Files
- Python - Directories
- Python - File Methods
- Python - OS File/Directory Methods
- Python - OS Path Methods
- Object Oriented Programming
- Python - OOPs Concepts
- Python - Classes & Objects
- Python - Class Attributes
- Python - Class Methods
- Python - Static Methods
- Python - Constructors
- Python - Access Modifiers
- Python - Inheritance
- Python - Polymorphism
- Python - Method Overriding
- Python - Method Overloading
- Python - Dynamic Binding
- Python - Dynamic Typing
- Python - Abstraction
- Python - Encapsulation
- Python - Interfaces
- Python - Packages
- Python - Inner Classes
- Python - Anonymous Class and Objects
- Python - Singleton Class
- Python - Wrapper Classes
- Python - Enums
- Python - Reflection
- Python Errors & Exceptions
- Python - Syntax Errors
- Python - Exceptions
- Python - try-except Block
- Python - try-finally Block
- Python - Raising Exceptions
- Python - Exception Chaining
- Python - Nested try Block
- Python - User-defined Exception
- Python - Logging
- Python - Assertions
- Python - Built-in Exceptions
- Python Multithreading
- Python - Multithreading
- Python - Thread Life Cycle
- Python - Creating a Thread
- Python - Starting a Thread
- Python - Joining Threads
- Python - Naming Thread
- Python - Thread Scheduling
- Python - Thread Pools
- Python - Main Thread
- Python - Thread Priority
- Python - Daemon Threads
- Python - Synchronizing Threads
- Python Synchronization
- Python - Inter-thread Communication
- Python - Thread Deadlock
- Python - Interrupting a Thread
- Python Networking
- Python - Networking
- Python - Socket Programming
- Python - URL Processing
- Python - Generics
- Python Libraries
- NumPy Tutorial
- Pandas Tutorial
- SciPy Tutorial
- Matplotlib Tutorial
- Django Tutorial
- OpenCV Tutorial
- Python Miscellenous
- Python - Date & Time
- Python - Maths
- Python - Iterators
- Python - Generators
- Python - Closures
- Python - Decorators
- Python - Recursion
- Python - Reg Expressions
- Python - PIP
- Python - Database Access
- Python - Weak References
- Python - Serialization
- Python - Templating
- Python - Output Formatting
- Python - Performance Measurement
- Python - Data Compression
- Python - CGI Programming
- Python - XML Processing
- Python - GUI Programming
- Python - Command-Line Arguments
- Python - Docstrings
- Python - JSON
- Python - Sending Email
- Python - Further Extensions
- Python - Tools/Utilities
- Python - GUIs
- Python Advanced Concepts
- Python - Abstract Base Classes
- Python - Custom Exceptions
- Python - Higher Order Functions
- Python - Object Internals
- Python - Memory Management
- Python - Metaclasses
- Python - Metaprogramming with Metaclasses
- Python - Mocking and Stubbing
- Python - Monkey Patching
- Python - Signal Handling
- Python - Type Hints
- Python - Automation Tutorial
- Python - Humanize Package
- Python - Context Managers
- Python - Coroutines
- Python - Descriptors
- Python - Diagnosing and Fixing Memory Leaks
- Python - Immutable Data Structures
- Python Useful Resources
- Python - Questions & Answers
- Python - Interview Questions & Answers
- Python - Online Quiz
- Python - Quick Guide
- Python - Reference
- Python - Cheatsheet
- Python - Projects
- Python - Useful Resources
- Python - Discussion
- Python Compiler
- NumPy Compiler
- Matplotlib Compiler
- SciPy Compiler
Python - Object Internals
The internals of Python objects provides deeper insights into how Python manages and manipulates data. This knowledge is essential for writing efficient, optimized code and for effective debugging.
Whether we're handling immutable or mutable objects by managing memory with reference counting and garbage collection or leveraging special methods and slots, grasping these concepts is fundamental to mastering Python programming.
Understanding Python's object internals is crucial for optimizing code and debugging. Following is an overview of the key aspects of Python object internals −
Object Structure
In Python every object is a complex data structure that encapsulates various pieces of information. Understanding the object structure helps developers to grasp how Python manages memory and handles data.
Each python object mainly consists of two parts as mentioned below −
- Object Header: This is a crucial part of every Python object that contains essential information for the Python interpreter to manage the object effectively. It typically consists of two main components namely Reference count and Type Pointer.
- Object Data: This data is the actual data contained within the object which can differ based on the object's type. For example an integer contains its numeric value while a list contains references to its elements.
Object Identity
Object Identity is the identity of an object which is an unique integer that represents its memory address. It remains constant during the object's lifetime. Every object in Python has a unique identifier obtained using the id() function.
Example
Following is the example code of getting the Object Identity −
a = "Tutorialspoint" print(id(a)) # Example of getting the id of an string object
On executing the above code we will get the following output −
2366993878000
Note: The memory address will change on every execution of the code.
Object Type
Object Type is the type of an object defines the operations that can be performed on it. For example integers, strings and lists have distinct types. It is defined by its class and can be accessed using the type() function.
Example
Here is the example of it −
a = "Tutorialspoint" print(type(a))
On executing the above code we will get the following output −
<class 'str'>
Object Value
Object Value of an object is the actual data it holds. This can be a primitive value like an integer or string, or it can be more complex data structures like lists or dictionaries.
Example
Following is the example of the object value −
b = "Welcome to Tutorialspoint" print(b)
On executing the above code we will get the following output −
Welcome to Tutorialspoint
Memory Management
Memory management in Python is a critical aspect of the language's design by ensuring efficient use of resources while handling object lifetimes and garbage collection. Here are the key components of memory management in Python −
- Reference Counting: Python uses reference counting to manage memory. Each object keeps track of how many references point to it. When this count drops to zero then the memory can be freed.
- Garbage Collection: In addition to reference counting the Python employs a garbage collector to identify and clean up reference cycles.
Example
Following is the example of the getting the reference counting in memory management −
import sys c = [1, 2, 3] print(sys.getrefcount(c)) # Shows the reference count
On executing the above code we will get the following output −
2
Attributes and Methods
Python objects can have attributes and methods which are accessed using dot notation. In which Attributes store data while methods define the behavior.
Example
class MyClass: def __init__(self, value): self.value = value def display(self): print(self.value) obj = MyClass(10) obj.display()
On executing the above code we will get the following output −
10
Finally, understanding Python's object internals helps optimize performance and debug effectively. By grasping how objects are structured and managed in memory where developers can make informed decisions when writing Python code.