
- Python - Home
- Python - Overview
- Python - History
- Python - Features
- Python vs C++
- Python - Hello World Program
- Python - Application Areas
- Python - Interpreter
- Python - Environment Setup
- Python - Virtual Environment
- Python - Basic Syntax
- Python - Variables
- Python - Data Types
- Python - Type Casting
- Python - Unicode System
- Python - Literals
- Python - Operators
- Python - Arithmetic Operators
- Python - Comparison Operators
- Python - Assignment Operators
- Python - Logical Operators
- Python - Bitwise Operators
- Python - Membership Operators
- Python - Identity Operators
- Python - Operator Precedence
- Python - Comments
- Python - User Input
- Python - Numbers
- Python - Booleans
- Python - Control Flow
- Python - Decision Making
- Python - If Statement
- Python - If else
- Python - Nested If
- Python - Match-Case Statement
- Python - Loops
- Python - for Loops
- Python - for-else Loops
- Python - While Loops
- Python - break Statement
- Python - continue Statement
- Python - pass Statement
- Python - Nested Loops
- Python Functions & Modules
- Python - Functions
- Python - Default Arguments
- Python - Keyword Arguments
- Python - Keyword-Only Arguments
- Python - Positional Arguments
- Python - Positional-Only Arguments
- Python - Arbitrary Arguments
- Python - Variables Scope
- Python - Function Annotations
- Python - Modules
- Python - Built in Functions
- Python Strings
- Python - Strings
- Python - Slicing Strings
- Python - Modify Strings
- Python - String Concatenation
- Python - String Formatting
- Python - Escape Characters
- Python - String Methods
- Python - String Exercises
- Python Lists
- Python - Lists
- Python - Access List Items
- Python - Change List Items
- Python - Add List Items
- Python - Remove List Items
- Python - Loop Lists
- Python - List Comprehension
- Python - Sort Lists
- Python - Copy Lists
- Python - Join Lists
- Python - List Methods
- Python - List Exercises
- Python Tuples
- Python - Tuples
- Python - Access Tuple Items
- Python - Update Tuples
- Python - Unpack Tuples
- Python - Loop Tuples
- Python - Join Tuples
- Python - Tuple Methods
- Python - Tuple Exercises
- Python Sets
- Python - Sets
- Python - Access Set Items
- Python - Add Set Items
- Python - Remove Set Items
- Python - Loop Sets
- Python - Join Sets
- Python - Copy Sets
- Python - Set Operators
- Python - Set Methods
- Python - Set Exercises
- Python Dictionaries
- Python - Dictionaries
- Python - Access Dictionary Items
- Python - Change Dictionary Items
- Python - Add Dictionary Items
- Python - Remove Dictionary Items
- Python - Dictionary View Objects
- Python - Loop Dictionaries
- Python - Copy Dictionaries
- Python - Nested Dictionaries
- Python - Dictionary Methods
- Python - Dictionary Exercises
- Python Arrays
- Python - Arrays
- Python - Access Array Items
- Python - Add Array Items
- Python - Remove Array Items
- Python - Loop Arrays
- Python - Copy Arrays
- Python - Reverse Arrays
- Python - Sort Arrays
- Python - Join Arrays
- Python - Array Methods
- Python - Array Exercises
- Python File Handling
- Python - File Handling
- Python - Write to File
- Python - Read Files
- Python - Renaming and Deleting Files
- Python - Directories
- Python - File Methods
- Python - OS File/Directory Methods
- Python - OS Path Methods
- Object Oriented Programming
- Python - OOPs Concepts
- Python - Classes & Objects
- Python - Class Attributes
- Python - Class Methods
- Python - Static Methods
- Python - Constructors
- Python - Access Modifiers
- Python - Inheritance
- Python - Polymorphism
- Python - Method Overriding
- Python - Method Overloading
- Python - Dynamic Binding
- Python - Dynamic Typing
- Python - Abstraction
- Python - Encapsulation
- Python - Interfaces
- Python - Packages
- Python - Inner Classes
- Python - Anonymous Class and Objects
- Python - Singleton Class
- Python - Wrapper Classes
- Python - Enums
- Python - Reflection
- Python Errors & Exceptions
- Python - Syntax Errors
- Python - Exceptions
- Python - try-except Block
- Python - try-finally Block
- Python - Raising Exceptions
- Python - Exception Chaining
- Python - Nested try Block
- Python - User-defined Exception
- Python - Logging
- Python - Assertions
- Python - Built-in Exceptions
- Python Multithreading
- Python - Multithreading
- Python - Thread Life Cycle
- Python - Creating a Thread
- Python - Starting a Thread
- Python - Joining Threads
- Python - Naming Thread
- Python - Thread Scheduling
- Python - Thread Pools
- Python - Main Thread
- Python - Thread Priority
- Python - Daemon Threads
- Python - Synchronizing Threads
- Python Synchronization
- Python - Inter-thread Communication
- Python - Thread Deadlock
- Python - Interrupting a Thread
- Python Networking
- Python - Networking
- Python - Socket Programming
- Python - URL Processing
- Python - Generics
- Python Libraries
- NumPy Tutorial
- Pandas Tutorial
- SciPy Tutorial
- Matplotlib Tutorial
- Django Tutorial
- OpenCV Tutorial
- Python Miscellenous
- Python - Date & Time
- Python - Maths
- Python - Iterators
- Python - Generators
- Python - Closures
- Python - Decorators
- Python - Recursion
- Python - Reg Expressions
- Python - PIP
- Python - Database Access
- Python - Weak References
- Python - Serialization
- Python - Templating
- Python - Output Formatting
- Python - Performance Measurement
- Python - Data Compression
- Python - CGI Programming
- Python - XML Processing
- Python - GUI Programming
- Python - Command-Line Arguments
- Python - Docstrings
- Python - JSON
- Python - Sending Email
- Python - Further Extensions
- Python - Tools/Utilities
- Python - GUIs
- Python Advanced Concepts
- Python - Abstract Base Classes
- Python - Custom Exceptions
- Python - Higher Order Functions
- Python - Object Internals
- Python - Memory Management
- Python - Metaclasses
- Python - Metaprogramming with Metaclasses
- Python - Mocking and Stubbing
- Python - Monkey Patching
- Python - Signal Handling
- Python - Type Hints
- Python - Automation Tutorial
- Python - Humanize Package
- Python - Context Managers
- Python - Coroutines
- Python - Descriptors
- Python - Diagnosing and Fixing Memory Leaks
- Python - Immutable Data Structures
- Python Useful Resources
- Python - Questions & Answers
- Python - Interview Questions & Answers
- Python - Online Quiz
- Python - Quick Guide
- Python - Reference
- Python - Cheatsheet
- Python - Projects
- Python - Useful Resources
- Python - Discussion
- Python Compiler
- NumPy Compiler
- Matplotlib Compiler
- SciPy Compiler
Python - Recursion
Recursion is a fundamental programming concept where a function calls itself in order to solve a problem. This technique breaks down a complex problem into smaller and more manageable sub-problems of the same type. In Python, recursion is implemented by defining a function that makes one or more calls to itself within its own body.
Components of Recursion
As we discussed before Recursion is a technique where a function calls itself. Here for understanding recursion, it's required to know its key components. Following are the primary components of the recursion −
- Base Case
- Recursive Case
Base Case
The Base case is a fundamental concept in recursion, if serving as the condition under which a recursive function stops calling itself. It is essential for preventing infinite recursion and subsequent stack overflow errors.
The base case provides a direct solution to the simplest instance of the problem ensuring that each recursive call gets closer to this terminating condition.
The most popular example of recursion is calculation of factorial. Mathematically factorial is defined as −
n! = n × (n-1)!
It can be seen that we use factorial itself to define factorial. Hence this is a fit case to write a recursive function. Let us expand above definition for calculation of factorial value of 5.
5! = 5 × 4! 5 × 4 × 3! 5 × 4 × 3 × 2! 5 × 4 × 3 × 2 × 1! 5 × 4 × 3 × 2 × 1 = 120
While we can perform this calculation using a loop, its recursive function involves successively calling it by decrementing the number till it reaches 1.
Example
The following example shows hows you can use a recursive function to calculate factorial −
def factorial(n): if n == 1: print (n) return 1 #base case else: print (n,'*', end=' ') return n * factorial(n-1) #Recursive case print ('factorial of 5=', factorial(5))
The above programs generates the following output −
5 * 4 * 3 * 2 * 1 factorial of 5= 120
Recursive Case
The recursive case is the part of a recursive function where the function calls itself to solve a smaller or simpler instance of the same problem. This mechanism allows a complex problem to be broken down into more manageable sub-problems where each them is a smaller version of the original problem.
The recursive case is essential for progressing towards the base case, ensuring that the recursion will eventually terminate.
Example
Following is the example of the Recursive case. In this example we are generating the Fibonacci sequence in which the recursive case sums the results of the two preceding Fibonacci numbers −
def fibonacci(n): if n <= 0: return 0 # Base case for n = 0 elif n == 1: return 1 # Base case for n = 1 else: return fibonacci(n - 1) + fibonacci(n - 2) # Recursive case fib_series = [fibonacci(i) for i in range(6)] print(fib_series)
The above programs generates the following output −
[0, 1, 1, 2, 3, 5]
Binary Search using Recursion
Binary search is a powerful algorithm for quickly finding elements in sorted lists, with logarithmic time complexity making it highly efficient.
Let us have a look at another example to understand how recursion works. The problem at hand is to check whether a given number is present in a list.
While we can perform a sequential search for a certain number in the list using a for loop and comparing each number, the sequential search is not efficient especially if the list is too large. The binary search algorithm that checks if the index 'high' is greater than index 'low. Based on value present at 'mid' variable, the function is called again to search for the element.
We have a list of numbers, arranged in ascending order. The we find the midpoint of the list and restrict the checking to either left or right of midpoint depending on whether the desired number is less than or greater than the number at midpoint.
The following diagram shows how binary search works −

Example
The following code implements the recursive binary searching technique −
def bsearch(my_list, low, high, elem): if high >= low: mid = (high + low) // 2 if my_list[mid] == elem: return mid elif my_list[mid] > elem: return bsearch(my_list, low, mid - 1, elem) else: return bsearch(my_list, mid + 1, high, elem) else: return -1 my_list = [5,12,23, 45, 49, 67, 71, 77, 82] num = 67 print("The list is") print(my_list) print ("Check for number:", num) my_result = bsearch(my_list,0,len(my_list)-1,num) if my_result != -1: print("Element found at index ", str(my_result)) else: print("Element not found!")
Output
The list is [5, 12, 23, 45, 49, 67, 71, 77, 82] Check for number: 67 Element found at index 5